Answer:
F(Mars) = 2 G m M / (4 R)^2 force of Sun on Mars
F(Merc) = G m M / R^2 force of force of Sun on Mercury
R = distance of Sun from Mercury, m = mass of Mercury
F(Merc) / F(Mars) = 4^2 / 2 = 8
Answer:
The time it takes the ball to stop is 0.021 s.
Explanation:
Given;
mass of the softball, m = 720 g = 0.72 kg
velocity of the ball, v = 15.0 m/s
applied force, F = 520 N
Apply Newton's second law of motion, to determine the time it takes the ball to stop;

Therefore, the time it takes the ball to stop is 0.021 s.
Answer:
Time period of the motion will remain the same while the amplitude of the motion will change
Explanation:
As we know that time period of oscillation of spring block system is given as

now we know that
M = mass of the object
k = spring constant
So here we know that the time period is independent of the gravity
while the maximum displacement of the spring from its mean position will depends on the gravity as


so we can say that
Time period of the motion will remain the same while the amplitude of the motion will change
Answer:
432 units
Explanation:
Let the charges be q and Q separated by a distance r. The electrostatic force , F = kqQ/r² = 72 units. If q = 2q and Q = 3Q, then the new electrostatic force is
F = k × 2q × 3Q/r² = 6kqQ/r² = 6 × 72 = 432 units