Answer:
a. Δx = 2.59 cm
Explanation:
mb = 0.454 kg , mp = 5.9 x 10 ⁻² kg , vp = 8.97 m / s , k = 21.0 N / m
Using momentum conserved
mb * (0) + mp * vp = ( mb + mp ) * vf
vf = ( mp / mp + mb) * vp
¹/₂ * ( mp + mb) * (mp / mp +mb) ² * vp ² = ¹/₂ * k * Δx²
Solve to Δx '
Δx = √ ( mp² * vp² ) / ( k * ( mp + mb )
Δx = √ ( ( 5.9 x 10⁻² kg ) ² * (8.97 m /s) ² / [ 21.0 N / m * ( 5.9 x10 ⁻² kg + 0.454 kg ) ]
Δx = 0.02599 m ⇒ 2.59 cm
The answer is 24.84kJ.
We apply the expression for the work done by the heat engine is,
. Putting all given values in the equation we get the final answer.
What is heat engine?
- A heat engine is a machine that uses heat to generate power. It draws heat from a reservoir, uses that heat to produce work, such as move a piston or lift weights, and then releases that heat energy into the sink.
- We are given:The heat input is
. The heat output is
. - The expression for the work done by the heat engine is,

- Substituting the given values in the above expression, we will get
=24.84kJ. - Thus, the work done by the heat engine is 24.84kJ.
To learn more about heat engine visit: brainly.com/question/15735984
#SPJ4
Explanation:
It is given that, a long, straight wire is surrounded by a hollow metal cylinder whose axis coincides with that of the wire.
The charge per unit length of the wire is
and the net charge per unit length is
.
We know that there exist zero electric field inside the metal cylinder.
(a) Using Gauss's law to find the charge per unit length on the inner and outer surfaces of the cylinder. Let
are the charge per unit length on the inner and outer surfaces of the cylinder.
For inner surface,



For outer surface,



(b) Let E is the electric field outside the cylinder, a distance r from the axis. It is given by :


Hence, this is the required solution.