The igneous rocks which were deposited on the surface and then cooled are known as extrusive. These rocks are a result of a magma reaching the surface of the Earth which cools the magma quickly. Examples are rhyolite, basalt, obsidian and andesite.
0.345 m.
<h3>Explanation</h3>
The wavelength is the distance that the wave travels in each cycle. The wave travels 345 meters in each second. Let the wavelength of this wave be
. That's the distance the wave travels in one cycle.
The frequency of the sound wave is 1 000 Hz, meaning that there are 1 000 cycles in each second. The wave travels a distance of 1 000 wavelengths in one second. That would be a distance of
.
From the speed of the wave, the wave travels 345 meters in one second. In other words,
.
.
To generalize:
,
where
wavelength of the wave,
the speed of the wave, and
the frequency of the wave.
Answer:304 not 261
Explanation:
That is, in prototype form anyway – the custom Chiron Longtail hit 304 mph (490 km/h) last year, but the production version dubbed the Chiron Super Sport 300+ will be electronically limited to only 273 mph (440 km/h).
...
Answer:
B = (μ₀*i/(2*π*x))*(x²-(a/2)²)/((b/2)²-(a/2)²)
Explanation:
Given
Outer diameter of the wire = b ⇒ R = b/2
Diameter of the clindrical hole at the center = a ⇒ r = a/2
The current that flows from left to right and is uniformly spread over the region between a and b = i
We apply Ampere's Law
Using the following formula for a/2 ≤ x ≤ b/2
B = (μ₀*i/(2*π*x))*(x²-(a/2)²)/((b/2)²-(a/2)²)