Answer:
The answer is 0.36 kg/s NO
Explanation:
the chemical reaction of NH3 to NO is as follows:
4NH3(g) + 5O2(g) ⟶4 NO(g) +6 H2O(l)
We have the following data:
O2 Volume rate = 645 L/s
P = 0.88 atm
T = 195°C + 273 = 468 K
NO molecular weight = 30.01 g/mol
we calculate the moles found in 645 L of O2:
P*V = n*R*T
n = P*V/R*T
n= (0.88 atm * 645L/s)/((0.08205 L*atm/K*mol) * 468 K) = 14.78 moles of O2
With the reaction we can calculate the number of moles of NO and with its molecular weight we will have the rate of NO:
14.78 moles/s O2 * 4 molesNO/5 molesO2 * 30.01 g NO/1 molNO x 1 kgNO/1000 gNO = 0.36 kg/s NO
The atomic number is the number of protons in the nucleus
Answer:
Mass of liquid: 20.421g
Density= 1.0109405940594 g/mL
Explanation:
Mass of liquid
To find mass of liquid you take the mass of beaker + liquid (171.223g) and subtract it from the Mass of beaker (beaker without the water). The difference is the answer.
171.223g - 150.802g = 20.421g
Density
To find density you use the formula Mass/Volume. Take the Volume given, and the mass of the liquid you just found.
20.421mL/20.421g = 1.0109405940594 g/mL
Answer:
The answer is to train.
Explanation:
Training is another word for taming a wild animal. To breed is to take to animals and make them have offspring with each other.
Answer:
The correct answer is 5.447 × 10⁻⁵ vacancies per atom.
Explanation:
Based on the given question, the at 750 degree C the number of vacancies or Nv is 2.8 × 10²⁴ m⁻³. The density of the metal is 5.60 g/cm³ or 5.60 × 10⁶ g/m³. The atomic weight of the metal given is 65.6 gram per mole. In order to determine the fraction of vacancies, the formula to be used is,
Fv = Nv/N------ (i)
Here Nv is the number of vacancies and N is the number of atomic sites per unit volume. To find N, the formula to be used is,
N = NA×P/A, here NA is the Avogadro's number, which is equivalent to 6.022 × 10²³ atoms per mol, P is the density and A is the atomic weight. Now putting the values we get,
N = 6.022 × 10²³ atoms/mol × 5.60 × 10⁶ g/m³ / 65.6 g/mol
N = 5.14073 × 10²⁸ atoms/m³
Now putting the values of Nv and N in the equation (i) we get,
Fv = 2.8 × 10²⁴ m⁻³ / 5.14073 × 10²⁸ atoms/m^3
Fv = 5.44669 × 10⁻⁵ vacancies per atom or 5.447 × 10⁻⁵ vacancies/atom.