Answer: option C.Water will move into the cell
Explanation:
1) Start by analyzing what the statement means in terms of relative concentrations:
------------------------ | inside the cell ------------ | outside the cell |
sugar --------------- | higher ----------------------- | lower ------------- |
water -------------- | lower ------------------------- | higher ------------ |
2) Osmosis is the process where a barrier (the celll membrane) permits the pass of some component and not others.
The component that can pass is that whose particles are smaller. Sugar molecules (the solute) are bigger than water molecules (the solvent), so sugar molecules cannot pass the cell membrane. Only water can.
3) The driviing force for the motion of water molecules is called diffusion. The diffusion occurs from higher concentrations to lower concentrations.
Hence, the water molecules will from outside the outiside the cell, where they have the greater concentration, toward the inside of the cell, where water hasa the lower concentration.
As result, the water will move into the cell, which is the option C.
Answer is: ammonia experience only dispersion intermolecular forces with BF₃ (boron trifluoride) because BF₃ is only nonpolar molecule (vectors of dipole moments cansel each other, dipole moment is zero).
The London dispersion force (intermolecular force) <span>is a temporary attractive </span>force between molecules.
My sample would be 4000 years old because on my graph, I had about 9 Virtualium left at trial 4 so I am guessing that it would be 4000 years old.
Answer:
One mole
Explanation:
The balanced chemical equation is
<u>1</u>NaOH + <u>1</u>HNO₃ ⟶ NaNO₃ + H₂O
<u>1</u> mol <u>1</u> mol
The coefficients in front of the formulas tell you the amount of something that reacts with an equivalent amount of something else.
In this reaction, 1 mol NaOH reacts with 1 mol HNO₃.
Answer:
<em>Your</em><em> </em><em>Answer</em><em> </em><em>is</em><em> </em><em>Option</em><em> </em><em>A</em><em> </em><em>that</em><em> </em><em>is</em><em> </em><em>Gas</em><em>.</em>