Answer:
Explanation:
We shall apply Gauss's theorem for electric flux to solve the problem . According to this theorem , total electric flux coming out of a charge q can be given by the following relation .
∫ E ds = q / ε
Here q is assumed to be enclosed in a closed surface , E is electric intensity on the surface so
∫ E ds represents total electric flux passing through the closed surface due to charge q enclosed in the surface .
This also represents total flux coming out of the charge q on all sides .
This is equal to q / ε where ε is a constant called permittivity which depends upon the medium enclosing the charge . For air , its value is 8.85 x 10⁻¹² .
If charge remains the same but radius of the sphere enclosing the charge is doubled , the flux coming out of charge will remain the same .
It is so because flux coming out of charge q is q / ε . It does not depend upon surface area enclosing the charge . It depends upon two factors
1 ) charge q and
2 ) the permittivity of medium ε around .
Distance covered is given as follows
1). 7 km North
2). 5 km North
3). 1 km East
Now total distance covered will be given as
Now in order to find the displacement we will show all with their directions
towards North
towards East
So total displacement is
so net displacement will be
so displacement is 12.04 km
If the two waves combine to produce ANY wave that smaller
than either of the originals, that's destructive interference.
Answer:
2000 ohms
Explanation:
Resisters in series just add.
Rt = R1 + R2 + R3
R1 = 650 ohm
R2 = 350 ohm
R3 = 1000 ohm
Rt = 650 + 350 + 1000
Rt = 2000 ohms.