Answer:
Yeda
Explanation:
yshyei5rexwu drift hai used thakare I exam rest watu testing reddy
Answer:
7.9
Explanation:
When we put the metal piece in the liquid (which is in the graduated cylinder), how much it goes up is equal to the volume of the piece we inserted.
So now we know that the volume of that piece of unknown metal is 7mL (which is the same as 7
).
Density is
.
So the density of that piece of metal is 
Which leaves us with a final density of 7.9
Answer:
Explanation:
Comet is made by dust particles, icy particles, gases etc.
A comet has a fixed time to complete a revolution around the sun.
As a comet comes nearer to the sun, due to the heat of the sun the vapour and the icy particles becomes gases and due to the radial pressure of energy od sun, we observe a tail of comet which has vapours mainly. SI the comet is visible easily.
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE