Answer:
Both Thomson and Rutherford used charged particles in their experiments.
Explanation:
Answer:
see explanation below
Explanation:
Given that,
500°C
= 25°C
d = 0.2m
L = 10mm = 0.01m
U₀ = 2m/s
Calculate average temperature

262.5 + 273
= 535.5K
From properties of air table A-4 corresponding to
= 535.5K 
k = 43.9 × 10⁻³W/m.k
v = 47.57 × 10⁻⁶ m²/s

A)
Number for the first strips is equal to


Calculating heat transfer coefficient from the first strip


The rate of convection heat transfer from the first strip is

The rate of convection heat transfer from the fifth trip is equal to


Calculating 

The rate of convection heat transfer from the tenth strip is


Calculating

Calculating the rate of convection heat transfer from the tenth strip

The rate of convection heat transfer from 25th strip is equal to

Calculating 

Calculating 

Calculating the rate of convection heat transfer from the tenth strip

Answer:
23 m/s downward
__________________________________________________________
<em>Taking the downward direction as positive</em>
<u>We are given:</u>
Initial velocity of the marble (u) = 0 m/s
Time interval (t) = 2.3 seconds
Final velocity (v) = x m/s
<u>Solving for the Final velocity:</u>
<u>Acceleration of the Marble:</u>
We know that gravity will make the marble accelerate at a constant acceleration of 10 m/s
<u>Final velocity:</u>
v = u + at [First equation of motion]
x = 0 + (10)(2.3) [replacing the given values]
x = 23 m/s
Hence, after 2.3 seconds, the marble will move at a velocity of 23 m/s in the downward direction
Answer:
a. Near both the equator and the prime meridian.
Explanation:
The equator is at 0 degrees latitude and the prime meridian is 0 degrees longitude.
Answer:
The coupled velocity of both the blocks is 1.92 m/s.
Explanation:
Given that,
Mass of block A, 
Initial speed of block A, 
Mass of block B, 
Initial speed of block B, 
It is mentioned that if the two blocks couple together after collision. We need to find the common velocity immediately after collision. We know that due to coupling, it becomes the case of inelastic collision. Using the conservation of linear momentum. Let V is the coupled velocity of both the blocks. So,

So, the coupled velocity of both the blocks is 1.92 m/s. Hence, this is the required solution.