Answer:
The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.
Explanation:
Thermodynamic work is called the transfer of energy between the system and the environment by methods that do not depend on the difference in temperatures between the two. When a system is compressed or expanded, a thermodynamic work is produced which is called pressure-volume work (p - v).
The pressure-volume work done by a system that compresses or expands at constant pressure is given by the expression:
W system= -p*∆V
Where:
- W system: Work exchanged by the system with the environment. Its unit of measure in the International System is the joule (J)
- p: Pressure. Its unit of measurement in the International System is the pascal (Pa)
- ∆V: Volume variation (∆V = Vf - Vi). Its unit of measurement in the International System is cubic meter (m³)
In this case:
- p= 10 atm= 1.013*10⁶ Pa (being 1 atm= 101325 Pa)
- ΔV= 2 L- 20 L= -18 L= -0.018 m³ (being 1 L=0.001 m³)
Replacing:
W system= -1.013*10⁶ Pa* (-0.018 m³)
Solving:
W system= 18234 J
<u><em>The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.</em></u>
Answer:
The answer is letter A. Diamond
Explanation:
The diamond is a crystalline form of carbon, with a cubic structure, of the sp³ type, that is, each carbon atom of the structure is linked to four other carbon atoms, forming a tetrahedral geometry.
The answer is PO4^-3 is non-polar.
Answer:
<u>When small organic molecules bind together, they form larger molecules called biological macromolecules.</u>Biological macromolecules are important cellular components and perform a wide array of functions necessary for the survival and growth of living organisms. The four major classes of biological macromolecules are carbohydrates, lipids, proteins, and nucleic acids.
(i hope this helps)