1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrrafil [7]
3 years ago
7

Different types of names given to explicit convertion in java​

Engineering
1 answer:
lbvjy [14]3 years ago
8 0

Two types of name is given to explicit conversation in java .They are

1. Automatic

2. Explicit

You might be interested in
The period of a pendulum T is assumed to depend only on the mass m, the length of the pendulum `, the acceleration due to gravit
zzz [600]

Answer:

The expression is shown in the explanation below:

Explanation:

Thinking process:

Let the time period of a simple pendulum be given by the expression:

T = \pi \sqrt{\frac{l}{g} }

Let the fundamental units be mass= M, time = t, length = L

Then the equation will be in the form

T = M^{a}l^{b}g^{c}

T = KM^{a}l^{b}g^{c}

where k is the constant of proportionality.

Now putting the dimensional formula:

T = KM^{a}L^{b}  [LT^{-} ^{2}]^{c}

M^{0}L^{0}T^{1} = KM^{a}L^{b+c}

Equating the powers gives:

a = 0

b + c = 0

2c = 1, c = -1/2

b = 1/2

so;

a = 0 , b = 1/2 , c = -1/2

Therefore:

T = KM^{0}l^{\frac{1}{2} } g^{\frac{1}{2} }

T = 2\pi \sqrt{\frac{l}{g} }

where k = 2\pi

8 0
4 years ago
A tension test is carried out on an Al alloy specimen which has an original diameter of 0.505 in and an original gauge length of
Contact [7]

Answer:

Detailed solution is given in attached image

5 0
3 years ago
A tensile test was operated to test some important mechanical properties. The specimen has a gage length = 1.8 in and diameter =
oee [108]

Answer:

a) 60000 psi

b) 1.11*10^6 psi

c) 112000 psi

d) 30.5%

e) 30%

Explanation:

The yield strength is the load applied when yielding behind divided by the section.

yield strength = Fyield / A

A = π/4 * D^2

A = 0.5 in^2

ys = Fy * A

y2 = 30000 * 0.5 = 60000 psi

The modulus of elasticity (E) is a material property that is related to the object property of stiffness (k).

k = E * L0 / A

And the stiffness is related to change of length:

Δx = F / k

Then:

Δx = F * A / (E * L0)

E = F * A / (Δx * L0)

When yielding began (approximately the end of the proportional peroid) the force was of 30000 lb and the change of length was

Δx = L - L0 = 1.8075 - 1.8 = 0.0075

Then:

E = 30000 * 0.5 / (0.0075 * 1.8) = 1.11*10^6 psi

Tensile strength is the strees at which the material breaks.

The maximum load was 56050 lb, so:

ts = 56050 / 0.5 = 112000 psi

The percent elongation is calculated as:

e = 100 * (L / L0)

e = 100 * (2.35 / 1.8 - 1) = 30.5 %

If it necked with and area of 0.35 in^2 the precent reduction in area was:

100 * (1 - A / A0)

100 * (1 - 0.35 / 0.5) = 30%

5 0
3 years ago
A world class runner can run long distances at a pace of 15 km/hour. That runner expends 800 kilocalories of energy per hour. a)
maks197457 [2]

Answer: a) 1.05kW b) 3.78MJ c) 5.3 bars

Explanation :

A)

Conversions give 900 kcal as 900000 x 4.2 J/cal {4.2 J/cal is the standard factor}

= 3780kJ

And 1 hour = 3600s

Therefore, Power in watts = 3780/3600 = 1.05kW = 1050W

B)

At 15km/hour a 15km run takes 1 hour.

1 hour is 3600s and the runner burns 1050 joule per second.

Energy used in 1 hour = 3600 x 1050 J/s

= 3780000 J or 3.78MJ

C)

1 mile = 1.61km so 13.1 mile is 13.1 x 1.61 = 21.1km

15km needs 3.78 MJ of energy therefore 21.1km needs 3.78 x 21.1/15 = 5.32MJ =5320 kJ

Finally,

1 Milky Way = 240000 calories = 4.2 x 240000 J = 1008000J or 1008kJ

This means that the runner needs 5320/1008 = 5.3 bars

7 0
4 years ago
Give the approximate temperature (in K) at which creep deformation becomes an important consideration for each of the following
andrezito [222]

Answer:

691K, 543K, 725K, 1473K, 240K, 373K

Explanation:

Creep deformation of any metal is the transformational tendency of a metal to distort rapidly or slowly when attacked by any form of mechanical stress. The temperature significant for a metal to deform is gotten by the division of the actual temperature of the metal by its melting point. This is termed homologous temperature which is 0.4 or higher. It is calculated by the equation:

0.4Tm

Therefore for the listed metals...

For Nickel, 0.4Tm = 0.4 ×(1455 + 273) = 691 K

For Copper, 0.4Tm = 0.4 ×(1085 + 273) = 543 K

For Iron, 0.4Tm = 0.4 ×(1538 + 273) = 725 K

For Tungsten, 0.4Tm = 0.4 ×(3410 + 273) = 1473 K

For Lead, 0.4Tm = 0.4 × (327 + 273) = 240 K

For Aluminium, 0.4Tm = 0.4 ×(660 + 273) = 373 K

5 0
3 years ago
Other questions:
  • A fluid has a dynamic viscosity of 0.048 Pa.s and a specific gravity of 0.913. For the flow of such a fluid over a flat solid su
    10·1 answer
  • As of January 1, 2018, Farley Co. had a credit balance of $534,000 in its allowance for uncollectible accounts. Based on experie
    10·1 answer
  • Consider a steam turbine, with inflow at 500oC and 7.9 MPa. The machine has a total-to-static efficiency ofηts=0.91, and the pre
    14·1 answer
  • . A 10W light bulb connected to a series of batteries may produce a brighter lightthan a 250W light bulb connected to the same b
    8·2 answers
  • Consider a thermal energy reservoir at 1500 K that can supply heat at a rate of 150,000 kJ/h. Determine the exergy of this suppl
    15·1 answer
  • The organic acid, ACOOH, reacts reversibly with the alcohol BOH, to form the ester ACOOB according to the stoichiometric equatio
    6·1 answer
  • true or false incident reports, such as situation reports and status reports enhance situational awareness and ensure that perso
    12·1 answer
  • What effect will increasing numbers of high-profile green building projects likely have on thinking about building?
    5·1 answer
  • Identify the different engineering activities/steps in the engineering design process for each steps,summarize in 1–3 sentences
    13·1 answer
  • PLS HURRY!!!
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!