Answer:
100 m/s ÷ 8 = 12.5 m/s
Explanation:
You must put multiply (÷)
Complete question:
Two parallel 3.0-meter long wires conduct current. The current in the top wire is 12.5 A and flows to the right. The top wire feels a repulsive force of 2.4 x 10^-4 N created by the interaction of the 12.5 A current and the magnetic field created by the bottom current (I). Find the magnitude and direction of the bottom current, if the distance between the two wires is 40cm.
Answer:
The bottom current is 12.8 A to the right.
Explanation:
Given;
length of the wires, L = 3.0 m
current in the top wire, I₁ = 12.5 A
repulsive force between the two wires, F = 2.4 x 10⁻⁴ N
distance between the two wires, r = 40 cm = 0.4 m
The repulsive force between the two wires is given by;

Where;
I₂ is the bottom current
The direction of the bottom current must be in the same direction as the top current since the force between the two wires is repulsive.

Therefore, the bottom current is 12.8 A to the right.
Answer:
Acceleration = 5.77 m/s²
Distance cover in 13 seconds = 487.56 meter
Explanation:
Given:
Final velocity of mobile device = 75 m/s
initial velocity of mobile device = 0 m/s
Time taken = 13 seconds
Find:
Acceleration
Distance cover in 13 seconds
Computation:
v = u + at
75 = 0 + (a)(13)
13a = 75
a = 5.77
Acceleration = 5.77 m/s²
s = ut + (1/2)(a)(t²)
s = (0)(t) + (1/2)(5.77)(13²)
Distance cover in 13 seconds = 487.56 meter
Answer:
a)
125.6 rad/s
b)
25.12 rad/s²
Explanation:
a)
t = time required by the fan to get up to final operating speed = 5 sec
w = final operating rotational speed = 1200 rpm
we know that :
1 revolution = 2π rad
1 min = 60 sec
w = 
w = 
w = 125.6 rad/s
b)
w₀ = initial angular speed = 0 rad/s
α = angular acceleration
using the equation
w = w₀ + α t
125.6 = 0 + α (5)
α = 25.12 rad/s²
Answer:
24cm/s
Explanation:
A=L*w
A'=L'*w'
L=13
w=5
L'=4
w'=6
A=?
A'=?
A=L*w
A=13*5
A=65
A'=L'*w'
A'=4*6
A'=24
*the given lengths are just to throw you off*