K = 1/2 m x v^2
m = mass on the cart
V = velocity imparted to the cart
KA = 1/2 mA x vA^2.......................(1)
KB = 1/2 mB x vB^2........................(2)
Diving equation 1 by equation 2, we get -
KA/KB = mA/mB
= 2
KA = 2 x KB
Option A is correct
Answer:
The intensity of the sound in W/m² is 1 x 10⁻⁶ W/m².
Explanation:
Given;
intensity of the sound level, dB = 60 dB
The intensity of the sound in W/m² is calculated as;
![dB = 10 Log[\frac{I}{I_o} ]\\\\](https://tex.z-dn.net/?f=dB%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C)
where;
I₀ is threshold of hearing = 1 x 10⁻¹² W/m²
I is intensity of the sound in W/m²
Substitute the given values and for I;
![dB = 10 Log[\frac{I}{I_o} ]\\\\60 = 10 Log[\frac{I}{I_o} ]\\\\6 = Log[\frac{I}{I_o} ]\\\\10^6 = \frac{I}{I_o} \\\\I = 10^6 \ \times \ I_o\\\\I = 10^6 \ \times \ 1^{-12} \ W/m^2 \\\\I = 1\ \times \ 10^{-6} \ W/m^2](https://tex.z-dn.net/?f=dB%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C60%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C6%20%3D%20%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C10%5E6%20%3D%20%5Cfrac%7BI%7D%7BI_o%7D%20%5C%5C%5C%5CI%20%3D%2010%5E6%20%5C%20%5Ctimes%20%5C%20I_o%5C%5C%5C%5CI%20%3D%2010%5E6%20%5C%20%5Ctimes%20%5C%201%5E%7B-12%7D%20%5C%20W%2Fm%5E2%20%5C%5C%5C%5CI%20%3D%201%5C%20%5Ctimes%20%5C%2010%5E%7B-6%7D%20%5C%20W%2Fm%5E2)
Therefore, the intensity of the sound in W/m² is 1 x 10⁻⁶ W/m².
Last One.... If Im not Wrong!
Burning of Fossil Fuels, Increase the CO2 And therefore the Green Effect!!
T
Answer:
the velocity is a second final to initial velocity of 39
a) 1.48 m/s
The tuning fork is moving by simple harmonic motion: so, the maximum speed of the tip of the prong is related to the frequency and the amplitude by

where
is the maximum speed
is the angular frequency
A is the amplitude
For the tuning fork in the problem, we have
, where f is the frequency
is the amplitude
Therefore, the maximum speed is

b) 
The fly's maximum kinetic energy is given by

where
is the mass of the fly
is the maximum speed
Substituting into the equation, we find
