Neutrons don’t carry an electrical charge, meaning that adding or subtracting them from the nucleus will not change the electrical charge of the nucleus of an atom. But, adding/removing neutrons changes the mass of the nucleus. This is how isotopes are formed.
This question provides us –
- Weight of
is = 47 g - Volume, V = 375 mL
__________________________________________
- Molar Mass of
–


<u>Using formula</u> –






- Henceforth, Molarity of the solution is = 1.7M
___________________________________________
Elements are separate particles that contain the properties of only one type of element (pure substance) and an atom represents that element as the smallest non divisible particle that retains the properties of that element. Compounds can be formed by conjoining different atoms together in different ratios and shapes, so a combination of elements.
The increase in the boiling point of a solvent is a colligative property.
That means that the increase in the boling point will be related to the number of particles (molecules or ions) present in the solution.
The higher the number of particles (molecules or ions) the higher the increase in the boiling point.
All the aqueous solutions presented are electrolytes, i.e. the solutes are ionic compounds.
Then, you have to compare the number of ions that you have in each solution.
A) 1.0 M KCl ---> 1.0 M K+ + 1.0 MCl- = 2 moles of particles / liter
B) 1.0 M CaCl2 --> 1.0M Ca(2+) + 1.0M * 2 Cl (-) = 3 moles of particle / liter
C) 2.0M KCl ---> 2.0 M K+ + 2.0 M Cl- = 4 moles of particle / liter
D) 2.0 M CaCl2 ----> 2.0 M Ca (2+) + 2.0M * 2 Cl (-) = 6 moles of particle / liter.
Then, the solution 2.0M CaCl2(aq) has the highest increase in the boiling point.
Answer: option D) 2.0 M Ca Cl2(aq)
The cell proliferates to produce many cells that result in multicellar organism.
answer