<u>Answer:</u>
<em>20, 44, 62 </em>
<em></em>
<u>Explanation:</u>
To find the number of atoms of each element, we multiply coefficient and subscript
For example
contains
5 × 1 = 5 ,Ca atoms and
5 × 2 = 10, Cl atoms
If there is a bracket in the chemical formula
For example
we multiply coefficient × subscript × number outside the bracket to find the number of atoms
(Please note: 3 is the coefficient, and if there is no number given then 1 will be the coefficient )
So
3 × 3 = 9 , Ca atoms
3 × 1 × 2 = 6, P atoms
3 × 4 × 2 = 24, O atoms are present.
So let us find the number of atoms of each element on the left side of the equation

Number of C atoms = 2 × 10 = 20
Number of H atoms = 2 × 22 = 44
Number of O atoms = 31 × 2 = 62
20, 44, 62 are the Answers.
Answer:
Sulfur (Option-C) <span>exhibits chemical behavior similar to that of oxygen.
Explanation:
Sulfur has same chemical properties as that of Oxygen because both of them belongs to same group in the periodic table. Also, the similarity of chemical behaviour among the group members is due to same number of electrons in their valence shells.
For examole, the electronic configuration of Oxygen is,
1s</span>², 2s², 2p⁴
There are six valence electrons in the valence shell (i.e. 2) of Oxygen.
Now for Sulfur,
1s², 2s², 2p⁶, 3s², 3p⁴
There are six valence electrons in the valence shell (i.e. 3) of Sulfur.
Therefore, both elements tends to gain 2 electrons in a reaction and form O⁻² and S⁻² respectively.
Answer:
80.8 g
Explanation:
First, let's write a balanced equation of this reaction
MgO + 2HNO₃ → Mg(NO₃)₂ + H₂O
Now let's convert grams to moles
We gotta find the weight of MgO
24 + 16 = 40 g/mol
12/40 = 0.3 moles of MgO
We can use this to find out how much Magnesium Nitrate will be formed
0.3 x 1 MgO / 1 Mg(NO₃)₂ = 0.3 moles of Magnesium Nitrate formed
Convert moles to grams
Find the weight of Mg(NO₃)₂ but don't forget that 2 subscript acts as a multiplier of whatever is inside that parenthesis.
24 + 14 x 2 + 16 x 3 x 2 = 148 g/mol
148 x 0.3 = 80.8 g
The answer you’re looking for is 0.250
Answer:
(b) IE₂ of Ga > IE₂ of Ge
Explanation:
Electronic configuration of Ga is [Ar] 3d¹⁰4s²4p¹
Electronic configuration of Ge is [Ar] 3d¹⁰4s²4p²
After 1st ionisation , Ga becomes [Ar] 3d¹⁰4s² and becomes stable . Its
2 nd ionisation requires higher amount of ionisation energy. In case of Ge , there are 2 electrons in outermost orbital so it becomes stable after ionisation of 2 electrons.