1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
deff fn [24]
3 years ago
5

What describes how to compare the energy of two different waves

Physics
2 answers:
olganol [36]3 years ago
7 0
C. Measure their amplitudes
Mazyrski [523]3 years ago
3 0

Answer:

the answer is C

Explanation:

If you need an explanation let me know and I'll be sure to provide one

You might be interested in
When you throw a ball up in the air, it travels up and then stops instantaneously before falling back down. At the point where i
Gnoma [55]

Answer:

The ball stops instantaneously at the topmost point of the motion.

Explanation:

Assume we have thrown a ball up in the air. For that we have given a force on the ball and it acquires an initial velocity in the upward direction.

The forces that resist the motion of the ball in the upward direction are the force of gravity and air resistance. The ball will instantaneously come to rest when the velocity of the ball reduces to zero.

The two forces acting in the downward direction reduces its speed continuously and it becomes zero at the topmost point.

4 0
3 years ago
A 6.99-g bullet is moving horizontally with a velocity of +341 m/s, where the sign + indicates that it is moving to the right (s
Ratling [72]

Answer:

a). 1.218 m/s

b). R=2.8^{-3}

Explanation:

m_{bullet}=6.99g*\frac{1kg}{1000g}=6.99x10^{-3}kg

v_{bullet}=341\frac{m}{s}

Momentum of the motion the first part of the motion have a momentum that is:

P_{1}=m_{bullet}*v_{bullet}

P_{1}=6.99x10^{-3}kg*341\frac{m}{s} \\P_{1}=2.3529

The final momentum is the motion before the action so:

a).

P_{2}=m_{b1}*v_{fbullet}+(m_{b2}+m_{bullet})*v_{f}}

P_{2}=1.202 kg*0.554\frac{m}{s}+(1.523kg+6.99x10^{-3}kg)*v_{f}

P_{1}=P_{2}

2.529=0.665+(1.5299)*v_{f}\\v_{f}=\frac{1.864}{1.5299}\\v_{f}=1.218 \frac{m}{s}

b).

kinetic energy

K=\frac{1}{2}*m*(v)^{2}

Kinetic energy after

Ka=\frac{1}{2}*1.202*(0.554)^{2}+\frac{1}{2}*1.523*(1.218)^{2}\\Ka=1.142 J

Kinetic energy before

Kb=\frac{1}{2}*mb*(vf)^{2}\\Kb=\frac{1}{2}*6.99x10^{-3}kg*(341)^{2}\\Kb=406.4J

Ratio =\frac{Ka}{Kb}

R=\frac{1.14}{406.4}\\R=2.8x10^{-3}

3 0
3 years ago
An object with a mass of 0.5 kilometre start from rest and achieves a maximum speed of 20 metre per second in 0.01 second, what
Katarina [22]

Answer:

Hiii how are you <u>doing?</u><u>?</u><u>I </u><u>don't</u><u> </u><u>understand</u><u> </u><u>that</u>

3 0
2 years ago
2. A 20 cm object is placed 10cm in front of a convex lens of focal length 5cm. Calculate
adoni [48]

Answer:

<u> </u><u>»</u><u> </u><u>Image</u><u> </u><u>distance</u><u> </u><u>:</u>

{ \tt{ \frac{1}{v}  +  \frac{1}{u} =  \frac{1}{f}  }} \\

  • v is image distance
  • u is object distance, u is 10 cm
  • f is focal length, f is 5 cm

{ \tt{ \frac{1}{v} +  \frac{1}{10} =  \frac{1}{5}   }} \\  \\  { \tt{ \frac{1}{v}  =  \frac{1}{10} }} \\  \\ { \tt{v = 10}} \\  \\ { \underline{ \underline{ \pmb{ \red{ \: image \: distance \: is \: 10 \: cm \:  \: }}}}}

<u> </u><u>»</u><u> </u><u>Magnification</u><u> </u><u>:</u>

• Let's derive this formula from the lens formula:

{ \tt{ \frac{1}{v}  +  \frac{1}{u} =  \frac{1}{f}  }} \\

» Multiply throughout by fv

{ \tt{fv( \frac{1}{v} +  \frac{1}{u} ) = fv( \frac{1}{f}  )}} \\   \\ { \tt{ \frac{fv}{v}  +  \frac{fv}{u}  =  \frac{fv}{f} }} \\  \\  { \tt{f + f( \frac{v}{u} ) = v}}

• But we know that, v/u is M

{ \tt{f + fM = v}} \\  { \tt{f(1 +M) = v }} \\ { \tt{1 +M =  \frac{v}{f}  }} \\  \\ { \boxed{ \mathfrak{formular :  } \: { \tt{ M =  \frac{v}{f}  - 1 }}}}

  • v is image distance, v is 10 cm
  • f is focal length, f is 5 cm
  • M is magnification.

{ \tt{M =  \frac{10}{5} - 1 }} \\  \\ { \tt{M = 5 - 1}} \\  \\ { \underline{ \underline{ \pmb{ \red{ \: magnification \: is \: 4}}}}}

<u> </u><u>»</u><u> </u><u>Nature</u><u> </u><u>of</u><u> </u><u>Image</u><u> </u><u>:</u>

  • Image is magnified
  • Image is erect or upright
  • Image is inverted
  • Image distance is identical to object distance.
4 0
2 years ago
A Chef is looking for a new frying pan that will allow her to cook food quickly at temperatures above 500°C. Use the data provid
makvit [3.9K]

Answer:

Explanation:

1st one

What is your evidence?

Very heavy professional or restaurant pans will have iron handles, while those for home use will be made of brass or stainless steel. All are perfectly safe for oven use.

6 0
2 years ago
Other questions:
  • An ice rescue team pulls a stranded hiker off a frozen lake by throwing him a rope and pulling him horizontally across the essen
    13·1 answer
  • To what is amplitude related? (1 pointthe amount of energy carried by the wave the maximum displacement from the rest position n
    5·1 answer
  • What makes some chemical bonds more stable than others
    11·1 answer
  • A photoelectric effect experiment finds a stopping potential of 1.93 V when light of wavelength 200 nm is used to illuminate the
    7·1 answer
  • What are the potential obstacles preventing you from completing your exercises as scheduled? How can you overcome those obstacle
    9·1 answer
  • If the sun did not rotate, what would happen to the global winds? why?
    12·1 answer
  • Car sitting on a drive way is that an kinetic or potential energy​
    11·1 answer
  • Children are sled riding on a hill One little girl pulls her sled back up the hill and does 379.5 joules of work while pulling i
    6·1 answer
  • How much of Earth's surface is dry, ice-free land? *
    7·1 answer
  • someone throws a rubber ball vertically upward from the roof of a building 8.2m in height. the ball rises, then falls.it just mi
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!