Answer:
a) Tantalum
b) 1.93 V
Explanation:
The energy of the incident photon= hc/λ
h= Plank's constant=6.63×10^-34 Is
c= speed of light = 3×10^8 ms-1
λ= wavelength of incident photon
E= 6.63×10^-34 × 3×10^8/ 200×10^-9
E= 0.099×10^-17
E= 9.9×10^-19 J
The kinetic energy of the electron = eV
Where;
e= electronic charge = 1.6×10^-19 C
V= 1.93 V
KE= 1.6×10^-19 C × 1.93 V
KE= 3.1 ×10^-19 J
From Einstein's photoelectric equation;
KE= E -Wo
Wo= E -KE
Wo=9.9×10^-19 J - 3.1 ×10^-19 J
Wo= 6.8×10^-19 J
Wo= 6.8×10^-19 J/1.6×10^-19
Wo= 4.25 ev
The metal is Tantalum
b) the stopping potential remains 1.93 V because intensity of incident photon has no effect on the stopping potential.
Answer:
Some examples of the uses of a screw are in a jar lid, a drill, a bolt, a light bulb, faucets, bottle caps and ball point pens.
Explanation:
Answer:
Both forces are the same.
Explanation:
The problem states that:

The force exerted on the moon by earth is given by:
where K is the gravitational constant, and d is the separation distance between the earth and the moon.
The force exerted on the earth by moon is given by:
where K is the gravitational constant, and d is the separation distance between the earth and the moon.
The relation is therefore:

As you can see, they are the same.
Answer is suspension.
Lets define all options.
<h3>Suspension:</h3>
In suspension the solute does not dissolve in liquid. When placed on table for some time, it will settle down at the bottom of the beaker. We can separate particles of solute easily from solvent through filtration.
<h3>Colloid:</h3>
In colloid particles of solute does not dissolve in liquid neither it is settle down. It floats through the solvent. It cannot be separated by filtration.
<h3>Solution:</h3>
In solution the particles of solute dissolve in to the solvent. We cannot identify them as separate. We cannot separate them by filtration. Salt and water solution is an example of it. Evaporation is the technique that is required to separate them.
<h3>Compound:</h3>
In compound, the two elements combine to form a new thing. Resultant/ compound have new or different properties other than its ingredients.
Now, the question was which of the following allow to settle out when sit on a table, so the answer is suspension. Suspension allows the particles to settle out when sit on a tables for some time.
Weight = (mass) x (gravity).
It always acts downward.
On Earth, the acceleration of gravity is 9.807 m/s².
On the Moon, the acceleration of gravity is 1.623 m/s².
On Earth, the rocket's weight is (0.8kg) x (9.8 m/s²) = 7.84 newtons
On the Moon, the rocket's weight is (0.8kg) x (1.62 m/s²) = 1.3 newtons
The force of the rocket engine acts upward.
Its magnitude is 12 newtons. (From the burning chemicals.
Doesn't depend on local gravity. Same force everywhere.)
Now we have all the data we need to mash together and calculate the
answers to the question. You might choose a different method, but the
machine that I have selected to do the mashing with is Newton's 2nd law
of motion:
Net Force = (mass) x (acceleration).
Since the question is asking for acceleration, let's first solve Newton's law
for it. Divide each side by (mass) and we have
Acceleration = (net force) / (mass) .
On Earth, the forces on the rocket are
(weight of 7.84 N down) + (blast of 12 N up) = 4.16 newtons UP (net)
Acceleration = (4.16 newtons UP) / (0.8 kg) = 5.2 m/s² UP .
On the moon, the forces on the rocket are
(weight of 1.3 N down) + (blast of 12 N up) = 10.7 newtons UP (net)
Acceleration = (10.7 newtons UP) / (0.8 kg) = 13.375 m/s² UP