<u>Answer:</u> The ball is travelling with a speed of 5.5 m/s after hitting the <u>bottle.</u>
<u>Explanation:</u>
To calculate the speed of ball after the collision, we use the equation of law of conservation of momentum, which is given by:

where,
are the mass, initial velocity and final velocity of ball.
are the mass, initial velocity and final velocity of bottle.
We are given:

Putting values in above equation, we get:

Hence, the ball is travelling with a speed of 5.5 m/s after hitting the bottle.
The electric magnet (Electromagnetic) is temporary because you can turn it on and off. When it's power source is gone, the magnet becomes useless. Usually it's power source is a battery, but it could be solar with a switch. Hope this helps. Please give me brainliest is this helps you.
Answer:
<em>It matters because crystalline and amorphous materials have different properties. The arrange affects the melting point (defined in crystals and a larger range in amorphous) and shape (geometrical in crystals, no geometrical in amorphous). </em>
Explanation:
The particles that compose a solid material are held in place by strong tractive forces between them when we analyze solids we consider the position of the atoms (molecules or ions) rather than their motion (which is important in liquids and gases). This positioning can be arranged in two general ways:
- Crystalline solids have internal structures that in turn lead to distinctive flat surfaces or face, these faces intersect at angles that are characteristic of the substance, crystals tend to have sharp, well defined and high melting points because of the same distance from the same number and type of neighbors. They generally have geometric shapes, some examples are diamonds, metals, salts.
- Amorphous solids produce irregular or curved surfaces when broken and they have poorly defined patterns when exposed to x rays because of their irregular array. In contrast with crystal solids, amorphous solids soften over a wide temperature range due to the different amounts of thermal energy needed to overcome different interactions. Some examples of these solids are gels, plastics, and some polymers.
I hope you find this information useful and interesting! Good luck!
<h3><u>Answer</u>;</h3>
A. There must be an equal number of atoms of each element on both sides of the equation.
<h3><u>Explanation;</u></h3>
- Chemical equations need to be balanced in order to satisfy the law of conservation of matter, which states that in a closed system matter is neither created nor destroyed.
- The number of atoms of each element should be equal on either side of the equation, that is the reactants and product side.