Answer:
c. can have a large cumulative effect
Explanation:
Noncovalent interactions between molecules are weaker than covalent interactions. Noncovalent interactions between molecules are of various types which include van der Waals forces, hydrogen bonding, and electrostatic interactions or ionic bonding.
van der Waals forces are weak interactions found in all molecules. They include dipole-dipole interactions - formed due to the differences in the electronegativity of atoms - and the London dispersion forces.
Hydrogen Bonds results when electrons are shared between hydrogen and a strongly electronegative atoms like fluorine, nitrogen, oxygen. The hydrogen acquires a partial positive charge while the electronegative atom acquires a partial negative. This results in attraction between hydrogen and neighboring electronegative molecules.
Ionic bonds result due to the attraction between groups with opposite electrical charges, for example in common salt between sodium and chloride ions.
Even though these noncovalent interactions are weak, cumulatively, they exert strong effect. For example, the high boiling point of water and the crystal structure of ice are due to hydrogen bonding.
4.1g
Explanation:
Given parameters:
Mass of carbon dioxide = 15g
Mass of oxygen gas = 11g
Unknown:
Mass of carbon consumed = ?
Solution:
Equation of the reaction:
C + O₂ → CO₂
To solve this problem from the balanced equation, we have to use the amount of product formed and work to Carbon. This is because, we are sure of the amount of carbon dioxide formed but the amount of the given oxygen gas used is not precise.
Number of moles of CO₂ = 
Molar mass of CO₂ = 12 + (16 x2) = 44g/mol
Number of moles of CO₂ =
= 0.34mole
From the equation of the reaction;
1 mole of CO₂ is produced from 1 mole of C
0.34mole of CO₂ will produce 0.34mole of C
Mass of carbon reacting = number of moles x molar mass = 0.34 x 12 = 4.1g
Learn more:
Number of moles brainly.com/question/1841136
#learnwithBrainly
Answer: Summary of Common Properties
- High ionization energies.
- High electronegativities.
- Poor thermal conductors.
- Poor electrical conductors.
- Brittle solids—not malleable or ductile.
- Little or no metallic luster.
- Gain electrons easily.
- Dull, not metallic-shiny, although they may be colorful.
Explanation:
<u><em>May I please have brainiest?</em></u>
Because all the compounds are at the same concentration, the one that can produce more particles in solution will be the one that will raise the boiling point the most.
<span>A. 2.0 M (NH4)3PO4 will produce 4 particles per molecule formula</span>
Answer is: lithium is the least reactive and potassium is the most reactive of the three alkali elements.
<span>The </span>reactivity<span> of the alkali metals increases down the group because one valence electron (I group of Periodic system of elements) is farther away from nucleus and attraction force between electron and proton is weaker.</span>