Explanation:
The given data is as follows.
Mass of ice dropped = 325 g
Initial temperature =
= (30 + 273) K = 303 K
Final temperature =
= (0 + 273) K = 273 K
Now, using density of water calculate the mass of ice as follows.

= 500 g
As the relation between heat energy, specific heat and change in temperature is as follows.
Q = 
= 
= 62750 J
Also, relation between heat energy and latent heat of fusion is as follows.
Q = m L
= 
= 108300 J
Therefore, we require
heat but we have 40774.95 J.
So, 
=
= 188.4 g
Hence, the mass of ice = 325 g - 188.4 g
= 137 g
Therefore, we can conclude that 137 g of ice will still be present when the contents of the pitcher reach a final temperature.
Answer:
Kindly check explanation
Explanation:
The force applied is directly proportional to the distance moved by an object, the larger the applied force, the greater the distance moved.
a = f/m
a = acceleration ; f = applied force ; m = mass
From the relation, we can see that acceleration is directly proportional to force applied.
The ball will travel farthest with the greatest applied force while, nearest distance will be attained with the smallest applied force.
The distance covered is affected by both the mass of the object and the applied force
The paper in the straw makes the soda fizz.
Answer:
Explanation:
Mechanical digestion involves physically breaking down food substances into smaller particles to more efficiently undergo chemical digestion. The role of chemical digestion is to further degrade the molecular structure of the ingested compounds by digestive enzymes into a form that is absorbable into the bloodstream.