7.Jupiter is the largest planet in our solar system at nearly 11 times the size of Earth and 317 times its mass.
When we look at Jupiter, we're actually seeing the outermost layer of its clouds.
The Great Red Spot is a storm in Jupiter's southern hemisphere with crimson-colored clouds that spin counterclockwise at wind speeds
8. 58,232 km
The second largest planet in the solar system
Surface. As a gas giant, Saturn doesn't have a true surface. The planet is mostly swirling gases and liquids deeper down.
Saturn's rings are thought to be pieces of comets, asteroids or shattered moons that broke up before they reached the planet,
9. Unlike the other planets of the solar system, Uranus is tilted so far that it essentially orbits the sun on its side, with the axis of its spin nearly pointing at the star.
Uranus' atmosphere is mostly hydrogen and helium, with a small amount of methane and traces of water and ammonia.
As an ice giant, Uranus doesn't have a true surface. The planet is mostly swirling fluids. While a spacecraft would have nowhere to land on Uranus, it wouldn't be able to fly through its atmosphere unscathed either. The extreme pressures and temperatures would destroy a metal spacecraft.
10. 24,622 km
Neptune has an average temperature of -353 Fahrenheit (-214 Celsius).
Neptune's atmosphere is made up mostly of hydrogen and helium with just a little bit of methane.
Answer:
Initial pressure = 6 atm. Work = 0.144 J
Explanation:
You need to know the equation P1*V1=P2*V2, where P1 is the initial pressure, V1 is the initial volume, and P2 and V2 are the final pressure and volume respectively. So you can rearrange the terms and find that (1.2*0.05)/(0.01) = initial pressure = 6 atm. The work done by the system can be obtained calculating the are under the curve, so it is 0.144J
Answer:
sorry i don't no
i promise i will help you later
now i am also in trouble now
nobody helps me
Answer:
The general shape of a frequency distribution. For many data sets, statisticians use this information to determine whether there is a “normal” distribution of values. In normal distributions, the mean, median, and mode are the same. Whether the distribution is symmetrical or skewed in a certain direction. If the data is skewed to the right, this shows the mean will be greater than the median. Similarly, if the data is skewed left, the mean will be less than the median. The symmetry, or asymmetry, of the chart can help statisticians calculate probability. The modality of the data set. This means how many peaks exist in the data. For normal distributions, there will be one peak, or mode, in the data set.
Explanation:
i just got it right on edgenuity :)

Here's a explanation!
Let's solve your equation step-by-step.


Step 1: Multiply both sides by x.


(Divide both sides by 4).


Take the root.
ANSWER!

Hopefully, this helps you!!
