1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vampirchik [111]
4 years ago
4

Two protons, with equal kinetic energy, collide head-on. What is the minimum kinetic energy Kp of one of these protons necessary

to make a pion-antipion pair? The rest energy of a pion is 139.6MeV.
Physics
1 answer:
lana [24]4 years ago
3 0

Answer:

K_p=139.6\ MeV

Explanation:

It is given that,

The rest energy of a pion is 139.6 MeV. Here, two protons having equal kinetic energy collides elastically. We need to find the minimum kinetic energy of one of these protons necessary to make a pion-antipion pair.

It can be calculated using conservation of energy and momentum, the total energy of the particles gets converted into rest mass energy of new particles. So,

2K_p=2\times E_{\pi^+}

K_p=\times E_{\pi^+}

K_p=139.6\ MeV

So, the minimum kinetic energy of one of these protons necessary to make a pion-antipion pair is 139.6 MeV. Hence, this is the required solution.

You might be interested in
Metallic bonds are responsible for many properties of metals, such as conductivity. Why is this possible? (1 point)
qaws [65]

Answer:

The bonds can shift because valence electrons are held loosely and more freely

Explanation:

Please give brainliest if you can,have a good day<3 :)

4 0
3 years ago
PLEASE HELP!!! 20 PIONTS!!!
timama [110]

Answer:

Transverse waves are always characterized by particle motion being perpendicular to wave motion. A longitudinal wave is a wave in which particles of the medium move in a direction parallel to the direction that the wave moves.

Explanation:

The movement of the medium is different. In the longitudinal wave, the medium moves left to right, while in thee transverse wave, the medium moves vertically up and down. Longitudinal waves have a compression and rarefaction, while the transverse wave has a crest and a trough. Longitudinal waves have a pressure variation, transverse waves don't have pressure variation. Longitudinal waves can be propagated in solids, liquids and gases, transverse waves can only be propagated in solids and on the surfaces of liquids. Longitudinal waves have a change in density throughout the medium, transverse waves don't.

4 0
3 years ago
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
3 years ago
A cylindrical wire has a length of 2.80 m and a radius of 1.03 mm. It carries a current of current of 1.35 A, when a a voltage o
aleksley [76]

Answer:

0.023 Ohms

Explanation:

Given data

Length= 2.8m

radius= 1.03mm

current I= 1.35 A

voltage V= 0.032V

We know that from Ohm's law

V= IR

Now  R= V/I

Substitute

R= 0.032/1.35

R= 0.023 Ohms

Hence the resistance is 0.023 Ohms

5 0
3 years ago
If the voltage drop across the first resistor is 13.00V, then how many volts remain for the 2nd resistor?
Scorpion4ik [409]

Answer:

2+1

Explanation:

2+1

8 0
3 years ago
Read 2 more answers
Other questions:
  • Displacement vectors of 3 m and 5 m in the same direction combine to ma
    6·1 answer
  • List three ways you can use an electric current describe the energy change that takes place
    15·1 answer
  • Sitting in a second-story apartment, a physicist notices a ball moving straight upward just outside her window. The ball is visi
    7·1 answer
  • What is motion define three types of motion with examples
    13·1 answer
  • Suppose that the electric field in the Earth's atmosphere is E = 1.16 102 N/C, pointing downward. Determine the electric charge
    15·1 answer
  • 20 cubic inches of a gas with an absolute pressure of 5 psi is compressed until its pressure reaches 10 psi. What is the new vol
    6·1 answer
  • What holds the atoms together in a covalent bond
    10·2 answers
  • A tungsten wire has resistance R at 20°C. A second tungsten wire at 20°C has twice the length and half the cross-sectional area
    8·1 answer
  • What is the tensile strength of hair ?
    9·2 answers
  • Which activity would help maintain homeostasis during exercise?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!