Answer: Speeding up the orbital speed of earth so it escapes the sun require the greater energy.
Explanation: To find the answer, we need to know more about the Orbital and escape velocities.
<h3>
What is Orbital and Escape velocity?</h3>
- Orbital velocity can be defined as the minimum velocity required to put the satellite in its orbit around the earth.
- The expression for orbital velocity near to the surface of earth will be,

- Escape velocity can be defined as the minimum velocity with which a body must be projected from the surface of earth, so that it escapes from the gravitational field of earth.
- The expression for orbital velocity will be,

- If we want to get into the sun, we want to slow down almost completely, so that your speed relative to the sun became almost zero.
- We need about twice the raw speed to go to the sun than to leave the sun.
Thus, we can conclude that, the speeding up the orbital speed of earth so it escapes the sun require the greater energy.
Learn more about orbital and escape velocity here:
brainly.com/question/28045208
#SPJ4
The energy that generates wind on an individual basis originates with
one's habitual diet. On a world-wide basis, it comes from the sun.
Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhoff. This generalized the work of Georg Ohm and preceded the work of Maxwell.
Answer: A)30V. First find the current of the circuit. I=V/R(total resistance). So I=60/120=0.5. Now to find voltage drop in R3 use ohms law as given. V(of 3)=(0.5)(60)=30V
Answer:
i think it's weakest
EDIT: It's net. I answered weakest but it was wrong and the correct answer was net. oops
Explanation:
if a strong force is acting on something it will push it away, meaning the object would go towards the weaker force