Answer:
= 17º C
Explanation:
This is a calorimetry problem, where heat is yielded by liquid water, this heat is used first to melt all ice, let's look for the necessary heat (Q1)
Let's reduce the magnitudes to the SI system
Ice m = 80.0 g (1 kg / 1000 g) = 0.080 kg
L = 3.33 105 J / kg
Water M = 860 g = 0.860 kg
= 4186 J / kg ºC
Q₁ = m L
Q₁ = 0.080 3.33 10⁵
Q₁ = 2,664 10⁴ J
Now let's see what this liquid water temperature is when this heat is released
Q = M
ΔT = M
(T₀₁ -
)
Q₁ = Q
= T₀₁ - Q / M ce
= 26.0 - 2,664 10⁴ / (0.860 4186)
= 26.0 - 7.40
= 18.6 ° C
The initial temperature of water that has just melted is T₀₂ = 0ª
The initial temperature of the liquid water is T₀₁= 18.6
m
+ M
= M
T₀₁ - m
T₀₂o2
= (M To1 - m To2) / (m + M)
= (0.860 18.6 - 0.080 0) / (0.080 + 0.860)
= 17º C
gg
Answer:
option (b)
Explanation:
mass of proton, mp = m
mass of deuteron, md = 2m
charge on proton, qp = q
charge on deuteron, qd = q
The magnetic force on the charged particle when it is moving is given by
F = q v B Sinθ
where, θ is the angle between the velocity and magnetic field.
Here, θ = 90°
Let v is the velocity of both the particle when they enters in the magnetic field.
The force on proton is given by
Fp = q x v x B ...... (1)
The force on deuteron is
Fd = q x v x B .... (2)
Divide equation (1) by equation (2)
Fp / Fd = 1
Thus, the ratio of force on proton to the force on deuteron is 1 : 1.
Thus, option (b) is correct.
Answer:
D. Solution
Explanation:
Sugar dissolved in water is an example of solution.
A solution is a homogenous mixture of solutes and solvents.
In a solution the solute particles ae distributed uniformly in the solvents. The solute is the substance and it is the sugar here that is dissolved to make a solution.
The solvent is the water in this instance that helps to dissolve the solute.