In short, the key value added of CDR data over census or survey approaches is the potential to access current and comprehensive evidence on population size, density, and dynamics, information that is fundamentally necessary for managing any humanitarian emergency or disease-related disaster but which is often
The law of conservation of matter states that matter cannot be created nor destroyed. It can only be transformed from one form to another. To state an example where this is shown, let's say a piece of paper is burning. Not having a scientific background, you would say that the matter is being destroyed. But in reality, the paper is simple being transformed to ash, carbon dioxide, and water vapor. Overall, the total mass would still remain the same.
<u>Answer:</u> The final temperature of the solution is 
<u>Explanation:</u>
The amount of heat released by coffee will be absorbed by aluminium spoon.
Thus, 
To calculate the amount of heat released or absorbed, we use the equation:

Also,
..........(1)
where,
q = heat absorbed or released
= mass of aluminium = 39 g
= mass of coffee = 166 g
= final temperature = ?
= temperature of aluminium = 
= temperature of coffee = 
= specific heat of aluminium = 
= specific heat of coffee= 
Putting all the values in equation 1, we get:
![39\times 0.904\times (T_{final}-24)=-[166\times 4.1801\times (T_{final}-83)]](https://tex.z-dn.net/?f=39%5Ctimes%200.904%5Ctimes%20%28T_%7Bfinal%7D-24%29%3D-%5B166%5Ctimes%204.1801%5Ctimes%20%28T_%7Bfinal%7D-83%29%5D)

Hence, the final temperature of the solution is 
Let V = the volume of the balloon
Force of gravity = V * ?hot * g downward
Buoyant force = V * ?cool * g upward
Net upward force F = V * ?cool * g - V * ?hot * g
F = V g (?cool - ?hot)
Mass of the balloon m = V ?hot
a = F/m = V g (?cool - ?hot)/(V ?hot)
a = g(?cool/?hot - 1)
a = 9.8(1.29/0.93 - 1)
a = 3.79 m/s^2
<span>Answer is 3.79 m/s^2</span>