The speed of an electron when it moves in a circular path perpendicular to a constant magnetic field is 8.88 x 10^7 m/s.
The angular momentum(L) of an electron moving in a circular path is given by the formula,
L = mvr ........(i)
We know that the radius of the path of an electron in a magnetic field is
r = mv/qB
Putting this value in equation (i),
L = mv x mv/qB
or L = (mv)^2/qB
Putting the given values in the above equation,
4 x 10^-25 = (9.1x10^-31)^2 x v^2/ 1.6 x 10^-19 x 1 x 10^-3
v comes out to be 8.88 x 10^7 m/s.
Hence, the speed of an electron when it moves in a circular path perpendicular to a constant magnetic field is 8.88 x 10^7 m/s.
To know more about "angular momentum", refer to the following link:
brainly.com/question/15104254?referrer=searchResults
#SPJ4
Answer:
225 rpm
Explanation:
The angular acceleration of the fan is given by:

where
is the final angular speed
is the initial angular speed
is the time interval
For the fan in this problem,

Substituting,

Now we can find the angular speed of the fan at the end of the 5th second, so after t = 5 s. It is given by:

where

Substituting,

The right hand rule to find the direction of the magnetic field for a falling bar is:
- The charge is positive the magnetic field is outgoing, horizontally and towards us.
- The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.
The magnetic force is given by the vector product of the velocity and the magnetic field.
F = q v x B
Where the bolds indicate vectors, F is the force, q the charge on the particle, v the velocity and B the magnetic field.
In the vector product, the vectors are perpendicular, which is why the right-hand rule has been established, see attached:
- The thumb points in the direction of speed.
- Fingers extended in the direction of the magnetic field.
- The palm is in the direction of the force if the charge is positive and in the opposite direction if the charge is negative.
They indicate that the bar is dropped, therefore its speed is vertical and downwards, it moves to the left therefore this is the direction of the force, we use the right hand rule, the magnetic field must be horizontal, we have two possibilities:
- If the charge is positive the magnetic field is outgoing, horizontally and towards us.
- If the charge of the bar is negative, the magnetic field is incoming, that is, horizontal away from us
In conclusion using the right hand rule we can find the direction of the magnetic field for a falling bar is:
- The charge of the bar is negative, the magnetic field is incoming, that is horizontal away from us.
- The charge is positive the magnetic field is outgoing, horizontally and towards us.
Learn more about the right hand rule here: brainly.com/question/12847190
Explanation:
The third class lever cannot magnify our force because in third class lever the effort it between the load and the fulcrum. Also, in this type of lever no matter where the force is applied, it is always greater than the force of load. Hence, That type of lever cannot magnify our force.