The faster car behind is catching up/closing the gap/gaining on
the slow truck in front at the rate of (90 - 50) = 40 km/hr.
At that rate, it takes (100 m) / (40,000 m/hr) = 1/400 of an hour
to reach the truck.
(1/400 hour) x (3,600 seconds/hour) = 3600/400 = <em>9 seconds</em>, exactly
The energy achieved I think
When objects fall to the ground, gravity causes them to accelerate. Acceleration is a change in velocity, and velocity, in turn, is a measure of the speed and direction of motion. Gravity causes an object to fall toward the ground at a faster and faster velocity the longer the object falls
It is overhead at the equator, it is because the sun ray’s
will be moving vertically as this will be directed at the equator. It is
because if it moves vertically, it will hit or overhead the equator and this
usually happens in spring and fall.
Answer:

Explanation:
The charge on one object, 
The distance between the charges, r = 0.22 m
The force between the charges, F = 4,550 N
Let q₂ is the charge on the other sphere. The electrostatic force between two charges is given by the formula as follows :

So, the charge on the other sphere is
.