Answer:
1. λ = 5.60 m
, 2. T = 5.80 s 3. v = 0.966 m/s 4. A = 0.315 m
Explanation:
1. The definition of wavelength is the distance between two consecutive maximums or minimums, so that the wave is repeated, in this case they give us the distance between two consecutive maximums, therefore
λ = 5.60 m
2. the period is the time it takes for the wave to start repeating itself, going through the same point. They give time to go from the highest point to the lowest point, which is the time for half a wavelength, so the time for a wavelength is
T = 2 t
T = 2 2.90
T = 5.80 s
3. For all waves the speed is the product of the wavelength by the frequency and the frequency is the inverse of the period
v = λ f
f = 1 / T
v = λ / T
v = 5.60 / 5.80
v = 0.966 m / s
4. The amplitude of the wave is the value of the zero displacement point to the maximum displacement point, give the value between the maximum and minimum displacement
A = d / 2
A = 0.63 / 2
A = 0.315 m
Answer:
a. 12.57 m/s b. 39.5 m/s² c. Her centripetal force is four times her weight.
Explanation:
a. What is Missy's linear speed on the rotor?
Missy's linear speed v = 2πr/T where r = radius = 4.0 m and T = time it takes to complete one revolution = 2.0 s
So, v = 2πr/T
= 2π(4.0 m)/2.0 s
= 4π m/s
= 12.57 m/s
b. What is Missy's centripetal acceleration on the rotor?
Missy's centripetal acceleration, a = v²/r where v = linear velocity = 12.57 m/s and r = radius = 4.0 m
a = v²/r
= (12.57 m/s)²/4.0 m
= 158.01 m²/s² ÷ 4.0 m
= 39.5 m/s²
c. If her mass is 50-Kg, how is the centripetal force compare to her weight?
Her centripetal force F = ma where m = mass = 50 kg and a = centripetal acceleration = 39.5 m/s².
Her weight W = mg where m = mass = 50 kg and g = acceleration due to gravity = 9.8 m/s².
So, comparing her centripetal force to her weight, we have
F/W = ma/mg
= a/g
= 39.5 m/s² ÷ 9.8 m/s²
= 4.03
≅ 4
So her centripetal force is four times her weight.
<u>I have assumed a weight of 120 N on Earth.</u>
Answer:
<em>The object weighs 20 N on the moon</em>
Explanation:
Weight
The weight of an object depends on the mass m of the object and the acceleration of gravity g of the place they are in.
The formula to calculate the weight is:
W = m.g
If g_e is the acceleration of gravity on Earth, and g_m is the acceleration of gravity on the moon, we know:

Dividing by ge:

An object of weight We=120 N on planet Earth has a mass of:

Multiplying by gm:

Substituting the ratio of accelerations of gravity:

Since m.gm is the weight on the Moon Wm:

The object weighs 20 N on the moon
Answer:
a) 29.36 m
b) 2.44 s
c) 2.57 s
d) 25.117 m/s
Explanation:
t = Time taken
u = Initial velocity = 24 m/s
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²
b)

Time taken by the ball to reach the highest point is 2.44 seconds
a)

The highest point reached by the ball above its release point is 29.36 m
c) Total height is 3+29.35 = 32.35 m

The ball reaches the ground 2.57 seconds after reaching the highest point
d)

The ball will hit the ground at 25.2117 m/s
A force that results from charged particles is called<u> </u><u>"electrostatic force".</u>
Hope this helps!
-Thanks!
-Charlie