Answer:
Thus induced emf is 0.0531 V
Solution:
As per the question:
Diameter of the loop, 
Thus the radius of the loop, R = 0.048 m
Time in which the loop is removed, t = 0.15 s
Magnetic field, B = 1.10 T
Now,
The average induced emf, e is given by Lenz Law:


where
= magnetic flux = 
where
A = cross sectional area
Also, we know that:



e = 0.0531 V
The sketch is shown in the figure, where I indicates the direction of the induced current.
Assuming the ball follows classical 2D projectile motion (moves in a parabola) and that the height y = the maximum height the ball goes in the y direction (because this would be its midpoint), then the velocity at height y is equal to the initial x component of velocity. At the midpoint, the y component is zero, so the velocity only depends on the x component. Projectiles move at constant speed in the x direction, so X = Xo. As long as you know actual values for Vi and either the initial angle or one initial component, then you can solve for Xo using trigonometry. Xo is thus the velocity of the ball once it has reached its maximum height.
Answer:
65.9°
Explanation:
When light goes through air to glass
angle of incidence, i = 35°
refractive index, n = 1.5
Let r be the angle of refraction
Use Snell's law


Sin r = 0.382
r = 22.5°
Now the ray is incident on the glass surface.
A = r + r'
Where, r' be the angle of incidence at other surface
r' = 60° - 22.5° = 37.5°
Now use Snell's law at other surface

Where, i' be the angle at which the light exit from other surface.

Sin i' = 0.913
i' = 65.9°