Answer:
(a) 104 N
(b) 52 N
Explanation:
Given Data
Angle of inclination of the ramp: 20°
F makes an angle of 30° with the ramp
The component of F parallel to the ramp is Fx = 90 N.
The component of F perpendicular to the ramp is Fy.
(a)
Let the +x-direction be up the incline and the +y-direction by the perpendicular to the surface of the incline.
Resolve F into its x-component from Pythagorean theorem:
Fx=Fcos30°
Solve for F:
F= Fx/cos30°
Substitute for Fx from given data:
Fx=90 N/cos30°
=104 N
(b) Resolve r into its y-component from Pythagorean theorem:
Fy = Fsin 30°
Substitute for F from part (a):
Fy = (104 N) (sin 30°)
= 52 N
Answer:
A
B

C

D

Explanation:
Considering the first question
From the question we are told that
The spring constant is 
The potential energy is 
Generally the potential energy stored in spring is mathematically represented as 
=>
=>
=>
Considering the second question
From the question we are told that
The mass of the dart is m = 0.050 kg
Generally from the law of energy conservation

=> 
=> 
Considering the third question
The height at which the dart was fired horizontally is 
Generally from the law of energy conservation

Here KE is kinetic energy of the dart which is mathematical represented as

=> 
=> 
=> 
Considering the fourth question
Generally the total time of flight of the dart is mathematically represented as

=> 
=> 
Generally the horizontal distance from the equilibrium position to the ground is mathematically represented as

=> 
=> 
The molecular geometry of both F2 and HF is linear.There are only two atoms which are covalently bonded and thus, the bonding scheme with the atoms looks like this;
F --- F
H---F
So, both are linear.
<span>The intermolecular attractions are the caause of attraction between the molecules of liquid water. These intermolecular bonding interactions in water is due to Hydrogen bonding. The hydrogen bonding is in between O and H atoms.</span>
Answer:
Use the drop-down menus to complete the statements.
When electrons are lost, a
✔ positive
ion is formed.
When electrons are gained, a
✔ negative
ion is formed.
Explanation: