Answer:
Kinetic - a box moving
Thermal - sand that feels warm
Electrical - lightning
Radiant - radio waves
Gravitational Potential - fruit hanging from a tree
Answer:
high density can withstand high acceleration and applied forces
Heavy metals are toxic to humans,
the clay is quite abundant and in general it is not toxic
Explanation:
The selection of materials for the construction of rockets takes into account many aspects, the technical resistance to the demands of space travel, but also the abundance of the material. Heavy metals have two very serious problems. The first one, some of them are a little scarce in nature, but the most serious problem is that almost all of them are toxic to humans, for example: lead and mercury.
On the other hand, the clay is quite abundant and in general it is not toxic to living beings.
If we use Newton's second law
F = m a
let's use the concept of density
rho = m / V
m = rho V
let's substitute
F = rho V a
From this expression we see that a material with high density can withstand high acceleration and applied forces, such as those existing in spacecraft clearance and re-entry to Earth.
Unfortunately with this law there is no criterion to select a material unless its density is high, in addition to this criterion low toxicity criteria for human beings are used,
Answer:
(for small oscillations)
Explanation:
The total energy of the pendulum is equal to:

For small oscillations, the equation can be re-arranged into the following form:

Where:
, measured in radians.
If the amplitude of pendulum oscillations is increase by a factor of 4, the angle of oscillation is
and the total energy of the pendulum is:

The factor of change is:


Answer:
v = 15.65 m/s
Explanation:
We use conservation of mechanical energy between initial (i) and final (f) states:
Pi + KEi = Pf + KEf
At the top of the cave at the instant the bat starts to fall, there is only potential energy since the bat's velocity is zero.
Pi = m g h = 600 J
and the KEi = 0 J (no velocity)
Knowing the height of the cave's roof (12.8 m) , we can find the mass of the bat:
m = 600 J / (g 12.5) = 4.9 kg
Using conservation of mechanical energy, the final state is:
Pf + KEf = 600 J
with Pf = 0 (just touching the ground)
KEf= 1/2 4.9 (v^2)
and we solve for the velocity:
600 J = 0 + 1/2 4.9 (v^2)
v^2 = 600 * 2 / 4.9 = 244.9
v = 15.65 m/s
The answer is strong winds, i hoped this helped.
→if this helped please mark brainliest i need to level up←