There are 100cm in 1m, divide 100 by 3 and you get 33, multiply that by 12 and you get 396 volts/m.
Hope this is correct and helps.
Answer:
(a) emf = 0.507 V
(b) emf = 0.0507 V
(c) emf = 0.00234 V
Explanation:
Given;
number of turns of the coil, N = 40 turns
diameter of the coil, d = 11 cm
radius of the coil, r = 5.5 cm = 0.055 m
magnitude of the magnetic field, B = 0.4 T
The magnitude of the induced emf is calculated as;

(a) when the time, t = 0.3 s

(b) when the time, t = 3.0 s

(c) when the time, t = 65 s

Answer:
Explanation:
To solve this simply put 11% in its decimal form (0.11) and multiply it by her take-home pay and boom that's yer answer 187
Answer:
a) P = 149140[w]; b) 1491400[J]; c) v = 63.06[m/s]
Explanation:
As the solution to the problem indicates, we must convert the power unit from horsepower to kilowatts.
P = 200 [hp]
![200[hp] * 745.7 [\frac{watt}{1 hp}]\\149140[watt]](https://tex.z-dn.net/?f=200%5Bhp%5D%20%2A%20745.7%20%5B%5Cfrac%7Bwatt%7D%7B1%20hp%7D%5D%5C%5C149140%5Bwatt%5D)
Now the power definition is known as the amount of work done in a given time
P = w / t
where:
w = work [J]
t = time [s]
We have the time, and the power therefore we can calculate the work done.
w = P * t
w = 149140 * 10 = 1491400 [J]
And finally, we can calculate the velocity using, the expression for kinetic energy
The key to solving this problem is to recognize that work equals kinetic energy
![v=\sqrt{\frac{w}{0.5*m}} \\v=\sqrt{\frac{1491400}{0.5*750}} \\v=63.06[m/s]](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cfrac%7Bw%7D%7B0.5%2Am%7D%7D%20%20%5C%5Cv%3D%5Csqrt%7B%5Cfrac%7B1491400%7D%7B0.5%2A750%7D%7D%20%20%5C%5Cv%3D63.06%5Bm%2Fs%5D)