Answer:
0.0468 g.
Explanation:
- The decay of radioactive elements obeys first-order kinetics.
- For a first-order reaction: k = ln2/(t1/2) = 0.693/(t1/2).
Where, k is the rate constant of the reaction.
t1/2 is the half-life time of the reaction (t1/2 = 1620 years).
∴ k = ln2/(t1/2) = 0.693/(1620 years) = 4.28 x 10⁻⁴ year⁻¹.
- For first-order reaction: <em>kt = lna/(a-x).</em>
where, k is the rate constant of the reaction (k = 4.28 x 10⁻⁴ year⁻¹).
t is the time of the reaction (t = t1/2 x 8 = 1620 years x 8 = 12960 year).
a is the initial concentration (a = 12.0 g).
(a-x) is the remaining concentration.
∴ kt = lna/(a-x)
(4.28 x 10⁻⁴ year⁻¹)(12960 year) = ln(12)/(a-x).
5.54688 = ln(12)/(a-x).
Taking e for the both sides:
256.34 = (12)/(a-x).
<em>∴ (a-x) = 12/256.34 = 0.0468 g.</em>
(b) there will be no change in pressure
Francium is the heaviest of the alkali metals, with an atomic mass of 223 grams.
Answer:
Three liquids can form something that will resemble into a solid because it depends on which liquids you use and because all three things can work together to make it into a solid with the ingredients that are in all three liquids they will make into a beautiful piece.
Explanation:
This is the correct answer!!
Answer:
32.23 to 4 significant figures.
Explanation:
The molar mass of the element is the mass of 6.022 * 10^23 atoms (Avogadro's number).
So by proportion it is 6.022 * 10^23 * 3.88 / 7.25 * 10^22
= 32.23 to 4 significant figures.