1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NNADVOKAT [17]
3 years ago
12

Cart A of inertia m has attached to its front end a device that explodes when it hits anything, releasing a quantity of energy E

. This cart is moving to the right with speed v when it collides head-on with cart B of inertia 2m traveling to the left at the same speed v. The explosive goes off when the carts hit, causing them to rebound from each other. The initial direction of motion of cart A (to the right) is the +x direction.
Part A
If one-quarter of the explosive energy is dissipated into the incoherent energy of noise and deformation of the carts, what is the final velocity of cart A?
Express your answer in terms of the variables E, v, and m.

Part B
If one-quarter of the explosive energy is dissipated into the incoherent energy of noise and deformation of the carts, what is the final velocity of cart B?
Express your answer in terms of the variables E, v, and m.
Physics
1 answer:
Leviafan [203]3 years ago
8 0
We need to write down momentum and energy conservation laws, this will give us a system of equation that we can solve to get our final answer. On the right-hand side, I will write term after the collision and on the left-hand side, I will write terms before the collision.
Let's start with energy conservation law:
\frac{mv^2}{2}+\frac{2mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+\frac{2mv_{B}^2}{2}
\frac{3mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+mv_{B}^2
This equation tells us that kinetic energy of two carts before the collision and 3 quarters of explosion energy is beign transfered to kinetic energy of the cart after the collision.
Let's write down momentum conservation law:
mv+2mv=mv_A+2mv_B\\ 3mv=mv_A+2mv_B\\
Because both carts have the same mass we can cancel those out:
3v=v_A+2v_B
Now we have our system of equation that we have to solve:
\frac{3mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+mv_{B}^2\\ 3v=v_A+2v_B
Part A
We need to solve our system for v_a. We will solve second equation for v_b and then plug that in the first equation.
3v=v_A+2v_B\\ 3v-v_A=2v_B\\ v_B=\frac{3v-v_A}{2}
Now we have to plug this in the first equation:
\frac{3mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+mv_{B}^2\\v_B=\frac{3v-v_A}{2}\\
We will multiply the first equation with 2 and divide by m:
3v^2+\frac{3E}{2m}=v_{A}^2}+2v_{B}^2\\v_B=\frac{3v-v_A}{2}\\
Now we plug in the second equation into first one:
3v^2+\frac{3E}{2m}=v_{A}^2}+2v_{B}^2\\ 3v^2+\frac{3E}{2m}=v_{A}^2}+2\frac{(3v-v_A)^2}{4}\\ 3v^2+\frac{3E}{2m}=v_{A}^2}+\frac{9v^2-6v\cdot v_A+v_{A}^2}{2} /\cdot 2\\ 6v^2+\frac{3E}{m}=2v_{A}^2+9v^2-6v\cdot v_A+v_{A}^2}\\ 3v_A^2-6v\cdot v_a+3(v^2-\frac{E}{m})=0/\cdot\frac{1}{3}\\ v_A^2-3v\cdot v_A+ (v^2-\frac{E}{m})=0
We end up with quadratic equation that we have to solve, I won't solve it by hand. 
Coefficients are:
a=1\\
b=-6v\\
c=v^2-\frac{E}{m}
Solutions are:
v_A=\frac{3v+\sqrt{5v^2+\frac{4E}{m}}}{2},\:v_A=\frac{3v-\sqrt{5v^2+\frac{4E}{m}}}{2}
Part B
We do the same thing here, but we must express v_a from momentum equation:
3v=v_A+2v_B\\
v_A=3v-2v_B
Now we plug this into our energy conservation equation:
3v^2+\frac{3E}{2m}=v_{A}^2}+2v_{B}^2\\v_A={3v-v_B}\\
3v^2+\frac{3E}{2m}=(3v-v_B)^2+2v_B^2\\
3v^2+\frac{3E}{2m}=9v^2-6v\cdot v_B+v_B^2+2v_B^2\\
3v^2+\frac{3E}{2m}=3v_B^2-6v\cdot v_B+9v^2\\
3v_B^2-6v\cdot v_B+9v^2-3v^2-\frac{3E}{2m}=0\\
3v_B^2-6v\cdot v_B+(6v^2-\frac{3E}{2m})=0

Again we end up with quadratic equation. Coefficients are:
a=3\\
b=-6v\\
c=6v^2-\frac{3E}{2m}
Solutions are:
v_B=\frac{6v+\sqrt{-36v^2+\frac{18E}{m}}}{6},\:v_B=\frac{6v-\sqrt{-36v^2+\frac{18E}{m}}}{6}



You might be interested in
What happens when close off the end of a garden hose?
Allushta [10]
Water dosent come out
5 0
3 years ago
If an astronaut travels to different planets, which of the following planets will the astronaut’s weight be the same as on Earth
Nataly_w [17]
<h2>Astronaut travels to different planets - Option 4 </h2>

If an astronaut travels to different planets, none of the planets will the astronaut’s weight be the same as on Earth. On jupiter, weight will be more than the weight on earth. For instance if an astronaut has 100kg on earth then he will have 252 kg on jupiter.

On Mars, weight will be less than the weight on the earth. For instance, if an astronaut has 68 kg on earth then he will has 26 kg on mars. On Mercury, weight of an astronaut will be less than the weight on earth. Example if he has 68 kg on earth then he will have 25.7kg on mercury.

Hence, none of these planets the weight of astronaut will be same as on earth.

3 0
3 years ago
Read 2 more answers
After the double-blind review policy was instituted, what percentage of published papers had a male first author?
Arte-miy333 [17]

Answer:

hesadghtyou is you here boiii

Explanation:

4 0
3 years ago
I have a test for my finals can y’all help me?
drek231 [11]
What’s the question? I may be able to help
7 0
3 years ago
Which statements describe the image produced by a concave lens?check all that apply.
kotegsom [21]

<em>Answer:</em>

<em>The answers are: </em>

  • <em>A-which is the image is always right side up.</em>
  • <em>E-the image is virtual</em>

<em></em>

<em>Explanation: MY EXPLANATION IS YOU ARE WELCOME BIG DOG 100..</em>

<em></em>

<h2 />
7 0
3 years ago
Read 2 more answers
Other questions:
  • Which of the following is most responsible for the magnetic behavior of materials?
    6·1 answer
  • A plane is flying horizontally with speed 292 m/s at a height 3880 m above the ground, when a package is dropped from the plane.
    11·1 answer
  • What is the difference between the states of phase equilibrium and metastability?
    12·1 answer
  • How much energy will an electron gain if it moves through a potential difference of 1.0 V?
    13·1 answer
  • Are the objects described here in static equilibrium, dynamic equilibrium, or not in equilibrium at all?
    5·1 answer
  • Therefore an answer in U.S. customary units, such as miles per hour would not be accepted as correct. A car traveling with const
    13·2 answers
  • What is the constraint forces
    7·1 answer
  • A star has right ascension of 5 hours. Which of these statements is correct about the star?
    6·1 answer
  • Una barra conductora de L = 0,9 m se mueve sin fricción sobre dos rieles conductores horizontales, Unos extremos de los rieles s
    14·1 answer
  • What is ur dream car
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!