1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
NNADVOKAT [17]
3 years ago
12

Cart A of inertia m has attached to its front end a device that explodes when it hits anything, releasing a quantity of energy E

. This cart is moving to the right with speed v when it collides head-on with cart B of inertia 2m traveling to the left at the same speed v. The explosive goes off when the carts hit, causing them to rebound from each other. The initial direction of motion of cart A (to the right) is the +x direction.
Part A
If one-quarter of the explosive energy is dissipated into the incoherent energy of noise and deformation of the carts, what is the final velocity of cart A?
Express your answer in terms of the variables E, v, and m.

Part B
If one-quarter of the explosive energy is dissipated into the incoherent energy of noise and deformation of the carts, what is the final velocity of cart B?
Express your answer in terms of the variables E, v, and m.
Physics
1 answer:
Leviafan [203]3 years ago
8 0
We need to write down momentum and energy conservation laws, this will give us a system of equation that we can solve to get our final answer. On the right-hand side, I will write term after the collision and on the left-hand side, I will write terms before the collision.
Let's start with energy conservation law:
\frac{mv^2}{2}+\frac{2mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+\frac{2mv_{B}^2}{2}
\frac{3mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+mv_{B}^2
This equation tells us that kinetic energy of two carts before the collision and 3 quarters of explosion energy is beign transfered to kinetic energy of the cart after the collision.
Let's write down momentum conservation law:
mv+2mv=mv_A+2mv_B\\ 3mv=mv_A+2mv_B\\
Because both carts have the same mass we can cancel those out:
3v=v_A+2v_B
Now we have our system of equation that we have to solve:
\frac{3mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+mv_{B}^2\\ 3v=v_A+2v_B
Part A
We need to solve our system for v_a. We will solve second equation for v_b and then plug that in the first equation.
3v=v_A+2v_B\\ 3v-v_A=2v_B\\ v_B=\frac{3v-v_A}{2}
Now we have to plug this in the first equation:
\frac{3mv^2}{2}+0.75E=\frac{mv_{A}^2}{2}+mv_{B}^2\\v_B=\frac{3v-v_A}{2}\\
We will multiply the first equation with 2 and divide by m:
3v^2+\frac{3E}{2m}=v_{A}^2}+2v_{B}^2\\v_B=\frac{3v-v_A}{2}\\
Now we plug in the second equation into first one:
3v^2+\frac{3E}{2m}=v_{A}^2}+2v_{B}^2\\ 3v^2+\frac{3E}{2m}=v_{A}^2}+2\frac{(3v-v_A)^2}{4}\\ 3v^2+\frac{3E}{2m}=v_{A}^2}+\frac{9v^2-6v\cdot v_A+v_{A}^2}{2} /\cdot 2\\ 6v^2+\frac{3E}{m}=2v_{A}^2+9v^2-6v\cdot v_A+v_{A}^2}\\ 3v_A^2-6v\cdot v_a+3(v^2-\frac{E}{m})=0/\cdot\frac{1}{3}\\ v_A^2-3v\cdot v_A+ (v^2-\frac{E}{m})=0
We end up with quadratic equation that we have to solve, I won't solve it by hand. 
Coefficients are:
a=1\\
b=-6v\\
c=v^2-\frac{E}{m}
Solutions are:
v_A=\frac{3v+\sqrt{5v^2+\frac{4E}{m}}}{2},\:v_A=\frac{3v-\sqrt{5v^2+\frac{4E}{m}}}{2}
Part B
We do the same thing here, but we must express v_a from momentum equation:
3v=v_A+2v_B\\
v_A=3v-2v_B
Now we plug this into our energy conservation equation:
3v^2+\frac{3E}{2m}=v_{A}^2}+2v_{B}^2\\v_A={3v-v_B}\\
3v^2+\frac{3E}{2m}=(3v-v_B)^2+2v_B^2\\
3v^2+\frac{3E}{2m}=9v^2-6v\cdot v_B+v_B^2+2v_B^2\\
3v^2+\frac{3E}{2m}=3v_B^2-6v\cdot v_B+9v^2\\
3v_B^2-6v\cdot v_B+9v^2-3v^2-\frac{3E}{2m}=0\\
3v_B^2-6v\cdot v_B+(6v^2-\frac{3E}{2m})=0

Again we end up with quadratic equation. Coefficients are:
a=3\\
b=-6v\\
c=6v^2-\frac{3E}{2m}
Solutions are:
v_B=\frac{6v+\sqrt{-36v^2+\frac{18E}{m}}}{6},\:v_B=\frac{6v-\sqrt{-36v^2+\frac{18E}{m}}}{6}



You might be interested in
An insect 5.00 mm tall is placed 20.0 cm to the left of a thin planoconvex lens. The left surface of this lens is flat, the righ
jenyasd209 [6]

Answer:

a) i = -9.63 cm ,    h ’= .0.24075 cm   erect

b)  i = 259.74 cm ,

Explanation:

For this exercise let's start by finding the focal length of the lens

               1 / f = (n-1) (1 / R₁ - 1 / R₂)

                1 / f = (1.70 -1)) 1 / ∞ - 1/13)

                1 / f = 0.0538

                 f = - 18.57 cm

Now we can use the constructor equation

             1 / f = 1 / o + 1 / i

             1 / i = 1 / f - 1 / o

              1 / i = -1 / 18.57 -1/20

               1 / i = -0.1038 cm

               I = -9.63 cm

For the height of the

image let's use magnification

                 m = h '/ h = - i / o

                  h ’= -h i / o

                  h ’= - 0.5 (-9.63) / 20

                  h ’= .0.24075 cm

b) we invert the lens

The focal length is

             1 / f = (1.70 -1) (1/13 - 1 / int)

              1 / f = 0.0538

             f = 18.57 cm

             1 / i = 1 / f -1 / o

             1 / I = 1 / 18.57 - 1/20

             1 / I = 3.85 10-3

             i = 259.74 cm

     

            h ’= - 0.5 259.74 / 20

             h ’= 6.4935 cm

7 0
3 years ago
two cars start at the same point and drive in a straight line for 5km. At the end of the drive their distances are the same but
Anna11 [10]

A 'displacement' always consists of a magnitude and a direction.  The two cars you just described have displacements with the same magnitude ... 5 km.  But if they didn't both drive in the same direction, then their displacements are different.

Remember:

-- 10 m/s² up and 10 m/s² down are different accelerations

-- 30 mph East and 30 mph West are the same speed but different velocity.

-- 5 km North and 5 km South are the same distance but different displacement.

7 0
3 years ago
2 pts
const2013 [10]

Answer:

I think the answer 1

Explanation:

im probably wrong too i dont know

5 0
2 years ago
Sitting in a chairlift, Rebecca has a gravitational potential energy of 5,997.6
stira [4]

Answer:

B) 12 m

Explanation:

Gravitational potential energy is:

PE = mgh

Given PE = 5997.6 J, and m = 51 kg:

5997.6 J = (51 kg) (9.8 m/s²) h

h = 12 m

8 0
3 years ago
Write SHORT examples of Gravitational potential energy and Elastic energy
Nikolay [14]
Dropping a bouncy ball and stretching a rubber ban.
6 0
3 years ago
Read 2 more answers
Other questions:
  • A firefighter with a weight of 707 N slides down a vertical pole with an acceleration of 2.79 m/s2, directed downward. (a) What
    7·1 answer
  • Which of the following most likely happens when the temperature of a chemical reaction is increased?
    12·2 answers
  • Which of the following statements is TRUE?
    9·2 answers
  • PLEASE HELPPPPP!!Calculate the net force acting on obiect A. In your answer, be sure to include the number, unit, and
    8·1 answer
  • The former soviet union launched the first artificial earth satellite. What is the name of this satelitte?
    8·1 answer
  • How much heat is necessary to change 350 g of ice at -20 degrees Celsius to water at 20 Celsius?
    9·1 answer
  • This is the sum of all the forces applied to an object. It is usually separated into a horizontal and vertical component.
    10·2 answers
  • When is it easiest for a person to build up static electricity?
    15·1 answer
  • An object moves in uniform circular motion at 25 m/s and takes 1.0 second to go a quarter circle. What is the radius of the circ
    5·2 answers
  • A 1400 kg car is moving at 33.8 m/s when a force is applied the opposite direction of the car's motion. The car slows down to 21
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!