1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tpy6a [65]
3 years ago
15

Key length is designed to provide desired factor of safety a. True b. False

Engineering
1 answer:
zhuklara [117]3 years ago
8 0

Answer: true

Explanation:

A key is a machine element that us used to connect the element of a rotating machine to a shaft. It should be noted that the key hinders the relative rotation that may take place between the two parts.

Key length is designed to provide desired factor of safety. It should also be noted that the factor of safety shouldn't be much and the key length is typically limited to the hub length.

You might be interested in
An aluminum metal rod is heated to 300oC and, upon equilibration at this temperature, it features a diameter of 25 mm. If a tens
Natalka [10]

Answer:

It will results in mechanical hardening.

5 0
3 years ago
Read 2 more answers
What does STP and NTP stands for in temperature measurement?
Lisa [10]

STP stands for standard temperature pressure and NTP stands for normal temperature pressure

8 0
3 years ago
The aluminum rod (E1 = 68 GPa) is reinforced with the firmly bonded steel tube (E2 = 201 GPa). The diameter of the aluminum rod
Vsevolod [243]

Answer:

Explanation:

From the information given:

E_1 = 68 \ GPa \\ \\ E_2 = 201 \ GPa  \\ \\ d = 25 \ mm \  \\ \\ D = 45 \ mm \ \\ \\ L   = 761 \ mm  \\ \\ P = -88 kN

The total load is distributed across both the rod and tube:

P = P_1+P_2 --- (1)

Since this is a composite column; the elongation of both aluminum rod & steel tube is equal.

\delta_1=\delta_2

\dfrac{P_1L}{A_1E_1}= \dfrac{P_2L}{A_2E_2}

\dfrac{P_1 \times 0.761}{(\dfrac{\pi}{4}\times .0025^2 ) \times 68\times 10^4}= \dfrac{P_2\times 0.761}{(\dfrac{\pi}{4}\times (0.045^2-0.025^2))\times 201 \times 10^9}

P_1(2.27984775\times 10^{-8}) = P_2(3.44326686\times 10^{-9})

P_2 = \dfrac{ (2.27984775\times 10^{-8}) P_1}{(3.44326686\times 10^{-9})}

P_2 = 6.6212 \ P_1

Replace P_2 into equation (1)

P= P_1 + 6.6212 \ P_1\\ \\ P= 7.6212\ P_1 \\ \\  -88 = 7.6212 \ P_1  \\ \\ P_1 = \dfrac{-88}{7.6212} \\ \\  P_1 = -11.547 \ kN

Finally, to determine the normal stress in aluminum rod:

\sigma _1 = \dfrac{P_1}{A_1} \\ \\  \sigma _1 = \dfrac{-11.547 \times 10^3}{\dfrac{\pi}{4} \times 25^2}

\sigma_1 = - 23.523 \ MPa}

Thus, the normal stress = 23.523 MPa in compression.

8 0
3 years ago
A binary geothermal power plant uses geothermal water at 160°C as the heat source. The cycle operates on the simple Rankine cycl
bogdanovich [222]

A binary geothermal power operates on the simple Rankine cycle with isobutane as the working fluid. The isentropic efficiency of the turbine, the net power output, and the thermal efficiency of the cycle are to be determined

Assumptions :

1.  Steady operating conditions exist.

2.  Kinetic and potential energy changes are negligible.

Properties:  The specific heat of geothermal water ( c_{geo}[) is taken to be 4.18 kJ/kg.ºC.  

Analysis (a) We need properties of isobutane, we can obtain the properties from EES.

a. Turbine

PP_{3} = 3.25mPa = (3.25*1000) kPa\\= 3250kPa\\from the EES TABLE\\h_{3} = 761.54 kJ/kg\\s_{3} = 2.5457 kJ/kg\\P_{4} = 410kPa\\\\s_{4} = s_{3} \\h_{4s} = 470.40kJ/kg\\\\T_{4} = 179.5^{0} C\\\\h_{4} = 689.74 kJ/KG\\\\ The  isentropic  efficiency, n_{T} = \frac{h_{3}-h_{4}  }{h_{3}- h_{4s} }

==\frac{761.54-689.74}{761.54-670.40} \\=\frac{71.8}{91.14} \\=0.788

b. Pump

h_{1} = h_{f} @ 410kPa = 273.01kJ/kg\\v_{1} = v_{f} @ 410kPa = 0.001842 m^{3}/kgw_{p,in} =  \frac{v_{1}(P_{2}-P_{1})   }{n_{p} } \\\\= \frac{0.01842(3250-410)}{0.9} \\\\ =5.81kJ/kg\\h_{2} =h_{1} + w_{p,in}\\          = 273.01+5.81\\           = 278.82 kJ/kg\\\\w_{T,out} = m^{.}  (h_{3} -h_{4} )\\=(305.6)(761.54-689.74)\\=305.6(71.8)\\=21,942kW\\\\

W^{.} _ {P,in} = m^{.} (h_{2} -h_{1}) \\=m^{.}  w_{p,in \\=305.6(5.81)\\\\=1,777kW\\W^{.}  _{net} = W^{.} _{T, out} - W^{.}  _{P,in} \\= 21,942-1,777\\=20,166 kW\\\\HEAT EXCHANGER\\\\Q_{in} = m^{.} _{geo} c_{geo} (T_{in-T_{out} } )\\=555.9(4.18)(160-90)\\=162.656kW\\

c. The thermal efficiency of the cycle  n_{th}  =\frac{W^{.} _{net} }{Q^{._{in} } } \\\\= \frac{20,166}{162,656} \\=0.124\\=12.4%

7 0
3 years ago
Read 2 more answers
The level of water in a dam is 6 m. The rectangular gate ABC is pinned at point B so it can rotate freely about this point. When
olchik [2.2K]

Answer:

The reaction at support B

Rb= 235440N

The reaction at support C

RC= 29430N

Explanation : check attachment

6 0
3 years ago
Other questions:
  • Your program should read from an input file, which will contain one or more test cases. Each test case consists of one line cont
    14·1 answer
  • Joseph wants to practice architecture. Which compulsory assessment administered by NCARB does he need to complete?
    10·1 answer
  • An air-standard cycle with constant specific heats at room temperature is executed in a closed system with 0.003 kg of air and c
    15·1 answer
  • Water at 310 K and a flow rate of 4 kg/s enters an alumina tube (k=177Wm K1) with an inner diameter of 0.20 m and a wall thickne
    13·1 answer
  • A fluid at 300 K flows through a long, thin-walled pipe of 0.2-m diameter. The pipe is enclosed in a concrete casing that is of
    10·1 answer
  • These are the most widely used tools and most often abuse tool​
    15·2 answers
  • PLEASE HELP AND ANSWER MY OTHER QUESTIONS!,
    7·1 answer
  • A properly fitted wearable pfd should have which characteristics
    11·1 answer
  • What is the primary difference between the process of lost-wax casting as practiced in ancient times and that same process today
    13·1 answer
  • How do you get your drivers lisnes when your 15
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!