The final velocity is 2.7 m/s
Explanation:
We can solve this problem by using the principle of conservation of momentum: in fact, in absence of external forces, the total momentum of the system must be conserved before and after the collision.
Therefore we can write:
where:
is the mass of the putty
is the initial velocity of the putty (we take its direction as positive direction)
is the mass of the ball
is the initial velocity of the ball (at rest)
is the final combined velocity of the two putty+ball
Re-arranging the equation and substituting the values, we find the final combined velocity:
And the positive sign indicates their final direction is the same as the initial direction of the putty.
Learn more about momentum here:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
He produced the first orderly arrangement of known elements, he used patterns to predict undiscovered elements
A) 
The total energy of the system is equal to the maximum elastic potential energy, that is achieved when the displacement is equal to the amplitude (x=A):
(1)
where k is the spring constant.
The total energy, which is conserved, at any other point of the motion is the sum of elastic potential energy and kinetic energy:
(2)
where x is the displacement, m the mass, and v the speed.
We want to know the displacement x at which the elastic potential energy is 1/3 of the kinetic energy:

Using (2) we can rewrite this as

And using (1), we find

Substituting
into the last equation, we find the value of x:

B) 
In this case, the kinetic energy is 1/10 of the total energy:

Since we have

we can write

And so we find:

false. clinical deals with patients and treats the.
research looks at root causes which clinical applies
Answer:
e
Explanation:
i took it myself and got it right