Answer:
2697.75N/m
Explanation:
Step one
This problem bothers on energy stored in a spring.
Step two
Given data
Compression x= 2cm
To meter = 2/100= 0.02m
Mass m= 0.01kg
Height h= 5.5m
K=?
Let us assume g= 9.81m/s²
Step three
According to the principle of conservation of energy
We know that the the energy stored in a spring is
E= 1/2kx²
1/2kx²= mgh
Making k subject of formula we have
kx²= 2mgh
k= 2mgh/x²
k= (2*0.01*9.81*5.5)/0.02²
k= 1.0791/0.0004
k= 2697.75N/m
Hence the spring constant k is 2697.75N/m
It takes about a really long time
Answer:
21.7 seconds.
Explanation:
Woman's velocity relative to train (23 m/s - 22.4 m/s) = 0.6 m/s
Distance woman wants to travel = 13m
To find how long she will take to move 13m relative to the train, take the distance she wants to travel divided by her velocity relative to the train.
(13m)/(0.6 m/s) = 21.6667 seconds or 21.7 seconds.
Therefore, it will take the woman 21.7 seconds to move 13m.
Answer:
+17 kg m/s
Explanation:
Question is missing. Found it on google:
"<em>What is the magnitude of the final momentum of the bowling pin if it has a mass of 1.5 kg</em>?"
Solution:
we can solve this problem by using the law of conservation of momentum. In fact, the total momentum of the system must be conserved, so we can write:

where
is the momentum of the ball before the collision
is the momentum of the pin before the collision (zero because the pin is stationary)
is the momentum of the ball after the collision
is the momentum of the pin after the collision
Solving the equation for
, we find:
