a). for velocity, you must have a number, a unit, and a direction.
Yes. This one isn't bad. The 'number' and the 'unit' are the speed.
b). the si units for velocity are miles per hour.
No. That's silly.
'miles' is not an SI unit, and 'miles per hour'
is only a speed, not a velocity.
c). the symbol for velocity is .
You can use any symbol you want for velocity, as long as
you make its meaning very clear, so that everybody knows
what symbol you're using for velocity.
But this choice-c is still wrong, because either it's incomplete,
or else it's using 'space' for velocity, which is a very poor symbol.
d). to calculate velocity, divide the displacement by time.
Yes, that's OK, but you have to remember that the displacement
has a direction, and so does the velocity.
Answer:
t = 6.17 s
Explanation:
For a 1 revolution movement, 
Torque, 
Moment of Inertia, 
If the wheel starts from rest, 
The angular displacement of the wheel can be given by the formula:
................(1)
Where
is the angular acceleration

To get t, put all necessary parameters into equation (1)

If object is not accelerating, the sum of all forces on the object will be equal to ZERO...
Answer:
54%
Explanation:
So, we have that the "magnitude of its displacement from equilibrium is greater than (0.66)A—''. Thus, the first step to take in answering this question is to write out the equation showing the displacement in simple harmonic motion which is = A cos w×t.
Therefore, we will have two instances t the displacement that is to say at a point 2π/w - a2 and the second point at a = a2.
Let us say that 2π/w = A, then, we have that a = A cos ^-1 (0.66)/2π. Also, we have that a2 = A/2 - A cos^- (0.66) / 2π.
The next thing to do is to calculate or determine the total length of of the required time. Thus, the total length is given as:
2a1 + ( A - 2a2) = 2A{ cos^-1 (0.66)}/ π.
Therefore, the total percentage of the period does the mass lie in these regions = 100 × {2a1 + ( A - 2a2) }/A = 2 { cos^-1 (0.66)}/ π × 100 = 54%.
Thus, the total percentage of the period does the mass lie in these regions = 54%.
Answer:
Work is done in moving a charge of 2 coulomb across two points having a potential difference of 12 volt is 24 joule .
Explanation: