Complete question:
Two parallel 3.0-meter long wires conduct current. The current in the top wire is 12.5 A and flows to the right. The top wire feels a repulsive force of 2.4 x 10^-4 N created by the interaction of the 12.5 A current and the magnetic field created by the bottom current (I). Find the magnitude and direction of the bottom current, if the distance between the two wires is 40cm.
Answer:
The bottom current is 12.8 A to the right.
Explanation:
Given;
length of the wires, L = 3.0 m
current in the top wire, I₁ = 12.5 A
repulsive force between the two wires, F = 2.4 x 10⁻⁴ N
distance between the two wires, r = 40 cm = 0.4 m
The repulsive force between the two wires is given by;

Where;
I₂ is the bottom current
The direction of the bottom current must be in the same direction as the top current since the force between the two wires is repulsive.

Therefore, the bottom current is 12.8 A to the right.
Perfect
symmetrical cone type volcanoes would have radial drainage pattern.
A stratovolcano, also known as a composite volcano, is a
conical volcano built up by many layers (strata) of hardened lava, tephra,
pumice, and volcanic ash.
If you have any further questions, please don’t hesitate to
ask again.
I would say option D, it depends on the size of the star
Diceplacement is the distance an object has traveled in a certain direction
for example, if you were to walk North for 20m, then east for 40m, the <u>distance</u> you have traveled is 60m however your displacement is the distance between your starting position and your end position;
sqrt(20^2+40^2) = 44.7m
and because displacement is a vector, there needs to be a direction;
sin(theta)=40/44.7
theta=63.4 degrees East of North
therefore the true displacement is 44.7m at 63.4 degrees East of North
The potential energy of the box when it gets to the top is
(mass) (gravity) (height)
= (7 kg) (9.8 m/s²) (5 m)
= 343 joules.
That's the work done against the force of gravity. Any
additional work is done against the force of friction.