Iron is the very last product in stellar fusion is that; Iron has a tightly bound nucleus, and atoms larger than iron are less stable and tend to undergo nuclear fission.
The stability of an atom is dependent on the binding energy per nucleon of the atom.
The binding energy per nucleon of elements increases steadily until iron, we can see that from the curve very easily.
Beyond iron, we have exceeded the region of stable binding energy per nucleon of atoms. The atoms after iron in the curve are mostly unstable heavy nuclei.
Learn more: brainly.com/question/10095561
Answer:
33.3 kg of air
Explanation:
This is a problem of conversion unit.
Density is mass / volume
Therefore we have to calculate the volume in the room, to be multiply by density. That answer will be the mass of air.
Volume of the room → 9 ft . 11 ft . 10 ft = 990 ft³
Density is in g/L, therefore we have to convert the ft³ to dm³ (1 dm³ = 1L)
990 ft³ . 28.3 dm³ / 1ft³ = 28017 dm³ → 28017 L
This is the volume of the room, if we replace it in the density formula we can know the mass of air in g.
1.19 g/L = Mass of air / 28017 L
Mass of air = 28017 L . 1.19 g/L → 33340 g of air
Finally, let's convert the mass in g to kg → 33340 g . 1kg / 1000 g = 33.3 kg
Answer:
the water.
Explanation:
well the water makes things look larger than due to ( the surface of a water drop curves outwards to make a dome. this outward or convex, curature light rays inward. the result is an enlarge ment image on the eye. / makes it look larger) + more mass.
Ionic compound is a chemical compound composed of ions held together by electrostatic forces termed ionic bonding
The given question is incomplete. The complete question is:
How much heat is produced when 24.8 g of
is burned in excess oxygen gas
Given:
ΔH= −802 kJ.
Answer: 1243.1 kJ
Explanation:
Heat of combustion is the amount of heat released on complete combustion of 1 mole of substance.
Given :
Amount of heat released on combustion of 1 mole of methane = 802 kJ kJ/mol
According to avogadro's law, 1 mole of every substance occupies 22.4 L at NTP, weighs equal to the molecular mass and contains avogadro's number
of particles.
1 mole of
weighs = 16 g
Thus we can say:
16 g of
on combustion releases heat = 802 kJ
Thus 24.8 g of
on combustion releases =
Thus heat released when 24.8 g of methane is burned in excess oxygen gas is 1243.1 kJ