Given :
Volume of NaCl solution 2.5 L .
Molarity of NaCl solution is 0.070 M .
To Find :
How many moles are present in the solution.
Solution :
Let, n be the number of moles.
We know, molarity is given by :

So,

Therefore, number of moles of NaCl is 0.175 moles.
Answer:
The best definition is: "Buffer capacity is the amount of acid or base that can be added to a buffer without destroying its effectiveness"
Explanation:
A buffer is a solution that is somewhat resist to pH changes by reacting with acids and bases that may be added into the solution. It's capacity is the amounto of acid or base that can be added into solution without much change in pH.
So the best definition is: "Buffer capacity is the amount of acid or base that can be added to a buffer without destroying its effectiveness"
Answer:o It is important to realise that mixing will be small unless there are electrons in the 4a1 LUMO, this is why NH3 is pyramidal while BH3 is planar! ... This mixing is very strong and stabilises the 3a1 MO substantially and hence NH3 is trigonal pyramidal and not planar.
Explanation:
Answer:
No, ΔE does not always equal zero because it refers to the systems internal energy, which is affected by heat and work
Explanation:
According to the first law of thermodynamics, energy is neither created nor destroyed. This implies that the total energy of a system is always a constant.
So, according to the first law of thermodynamics we have that ΔE = q + w. This means that the value of ΔE depends on q (heat) and w(work). Hence ΔE is not always zero since it depends on the respective values of q and w.