Carbon cycle shows is the continous movement of carbon in elemental and combined states on earth.
Steps :-
☆ Carbon moves from the atmosphere to plants. ...
☆ Carbon moves from plants to animals. ...
☆ Carbon moves from plants and animals to soils. ...
☆ Carbon moves from living things to the atmosphere. ...
☆ Carbon moves from fossil fuels to the atmosphere when fuels are burned. ...
☆ Carbon moves from the atmosphere to the oceans.
~ Benhemin360
Answer:
carrying capacity.
Explanation:
The number of organisms that can be sustained by an environment without environmental degradation is its carrying capacity.
The carrying capacity of a living species in an ecosystem is the species ' maximum population size that the environment could carry indefinitely, given the ecosystem's food, habitat, water, as well as other necessities are sufficient.
The diameter of a ball is 3.8 cm.
Because 400/3.8 = 105.26,
each dimension of 400 m can accommodate 105 balls.
Similarly, because 300/3.8 = 78.95,
each dimension of 300 m can accommodate 78 balls.
The total number of balls is 105*105*78 = 859,950
Answer: 859,950 balls
Answer:
acceleration = -0.042 m/s²
velocity at beginning = 14.167 m/s
velocity at end = 5.7183 m/s
Explanation:
given data
distance d1 = 1 km
distance d2 = 2 km
time t1 = 80 s
time t2 = 120 s + 80s = 200 s
to find out
acceleration and velocity at beginning and end
solution
we apply here law of motion that is
d = vt + 1/2×at²
put value
1000 = v(80) + 1/2×a(80)² ........................1
and
2000 = v(200) + 1/2×a(200)² ........................2
so from equation 1 and 2 we get a and v
a = -0.042 m/s² and
v = 14.167 m/s
so by kinematic final velocity will be
V² = v² + 2ad
V² = (14.167)² + 2×(-0.042)×(2000)
V² = 32.70
V = 5.7183 m/s
so
acceleration = -0.042 m/s²
velocity at beginning = 14.167 m/s
velocity at end = 5.7183 m/s