Answer:
d. Because those chemicals are easily made when CO2 reacts with water, forming H2CO3 (via carbonic anhydrase
Answer : The ratio of the protonated to the deprotonated form of the acid is, 100
Explanation : Given,

pH = 6.0
To calculate the ratio of the protonated to the deprotonated form of the acid we are using Henderson Hesselbach equation :
![pH=pK_a+\log \frac{[Salt]}{[Acid]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BSalt%5D%7D%7B%5BAcid%5D%7D)
![pH=pK_a+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
Now put all the given values in this expression, we get:
![6.0=8.0+\log \frac{[Deprotonated]}{[Protonated]}](https://tex.z-dn.net/?f=6.0%3D8.0%2B%5Clog%20%5Cfrac%7B%5BDeprotonated%5D%7D%7B%5BProtonated%5D%7D)
As per question, the ratio of the protonated to the deprotonated form of the acid will be:
Therefore, the ratio of the protonated to the deprotonated form of the acid is, 100
I believe the correct answer is D. Because object A on the pH scale reads pH=3. Which means it is more acidic in nature and thus possess a greater hydrogen or hydronium ion concentration than object B, which has a higher value on the pH scale. Object B would thus have a lower hydronium ion concentration than Object A.
Answer:
1. A long crack in the oceanic crust forms at a mid ocean ridge
Explanation:
Pb + Mg(NO₃)₂ → Pb(NO₃)₂ + Mg
This reaction would NOT occur because Pb is less reactive than Mg and as such Pb cannot displace the Mg in order for the reaction to occur under normal conditions.
Mg + Fe(NO₃)₂ → Fe + Mg(NO₃)₂
This reaction would occur. This is because Mg is more reactive than Fe and as such can displace it in the reaction, thus allowing the reaction to occur under normal conditions.
Cu + Mg(NO₃)₂ → Cu(NO₃)₂ + Mg
This reaction would NOT occur. Mg is more reactive than Cu, and as such copper cannot displace magnesium in order for the reaction to occur under normal conditions.