<span>The last option.
Plants absorb carbon dioxide from the atmosphere, water from the soil and other nutrients also from the soil - salts containing nitrogene, potassium, sulphur, etc. They use water and carbon dioxide to produce sugar through photosyntesis.
Decomposition is the reaction that converts any organic compound back into inorganic compounds - water, carbon dioxide and salts containing nitrogene, potassium, sulphur, etc. So it's basically the opposite.
So photosyntesis uses carbon dioxide as a reactive and take it from the atmosphere, whereas decomposition generates carbon dioxide as a product and releases it to the atmosphere.</span>
Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take your pencil and pull the string until the pencil and two tacks make a triangle (see diagram at the right). Then begin to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constant. The two other points (represented here by the tack locations) are known as the foci of the ellipse. The closer together that these points are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special case of an ellipse in which the two foci are at the same location. Kepler's first law is rather simple - all planets orbit the sun in a path that resembles an ellipse, with the sun being located at one of the foci of that ellipse.
<u>Answer</u>
1) A. 96 Candelas
2) A. Both of these types of lenses have the ability to produce upright images.
3) C. 5 meters
<u>Explanation</u>
Q1
The formula for calculation the luminous intensity is;
Luminous intensity = illuminance × square radius
Lv = Ev × r²
= 6 × 4²
= 6 × 16
= 96 Candelabra
Q2
For converging lenses, an upright image is formed when the object is between the lens and the principal focus while a diverging lens always forms and upright image.
A. Both of these types of lenses have the ability to produce upright images.
Q3
Luminous intensity = illuminance × square radius
square radius = Luminous intensity/ illuminance
r² = 100/4
= 25
r = √25
= 5 m
Answer:
The load has a mass of 2636.8 kg
Explanation:
Step 1 : Data given
Mass of the truck = 7100 kg
Angle = 15°
velocity = 15m/s
Acceleration = 1.5 m/s²
Mass of truck = m1 kg
Mass of load = m2 kg
Thrust from engine = T
Step 2:
⇒ Before the load falls off, thrust (T) balances the component of total weight downhill:
T = (m1+m2)*g*sinθ
⇒ After the load falls off, thrust (T) remains the same but downhill component of weight becomes m1*gsinθ .
Resultant force on truck is F = T – m1*gsinθ
F causes the acceleration of the truck: F= m*a
This gives the equation:
T – m1*gsinθ = m1*a
T = m1(a + gsinθ)
Combining both equations gives:
(m1+m2)*g*sinθ = m1*(a + gsinθ)
m1*g*sinθ + m2*g*sinθ =m1*a + m1*g*sinθ
m2*g*sinθ = m1*a
Since m1+m2 = 7100kg, m1= 7100 – m2. This we can plug into the previous equation:
m2*g*sinθ = (7100 – m2)*a
m2*g*sinθ = 7100a – m2a
m2*gsinθ + m2*a = 7100a
m2* (gsinθ + a) = 7100a
m2 = 7100a/(gsinθ + a)
m2 = (7100 * 1.5) / (9.8sin(15°) + 1.5)
m2 = 2636.8 kg
The load has a mass of 2636.8 kg
The answer is electromagnetic Induction.
I hope this answer will help you