Answer : The mole fraction and partial pressure of
and
gases are, 0.267, 0.179, 0.554 and 1.54, 1.03 and 3.20 atm respectively.
Explanation : Given,
Moles of
= 1.79 mole
Moles of
= 1.20 mole
Moles of
= 3.71 mole
Now we have to calculate the mole fraction of
and
gases.


and,


and,


Thus, the mole fraction of
and
gases are, 0.267, 0.179 and 0.554 respectively.
Now we have to calculate the partial pressure of
and
gases.
According to the Raoult's law,

where,
= partial pressure of gas
= total pressure of gas = 5.78 atm
= mole fraction of gas


and,


and,


Thus, the partial pressure of
and
gases are, 1.54, 1.03 and 3.20 atm respectively.
Cause it felt like being cold
Answer:
K = 3.37
Explanation:
2 NH₃(g) → N₂(g) + 3H₂(g)
Initially we have 4 mol of ammonia, and in equilibrium we have 2 moles, so we have to think, that 2 moles have been reacted (4-2).
2 NH₃(g) → N₂(g) + 3H₂(g)
Initally 4moles - -
React 2moles 2m + 3m
Eq 2 moles 2m 3m
We had produced 2 moles of nitrogen and 3 mol of H₂ (ratio is 2:3)
The expression for K is: ( [H₂]³ . [N₂] ) / [NH₃]²
We have to divide the concentration /2L, cause we need MOLARITY to calculate K (mol/L)
K = ( (2m/2L) . (3m/2L)³ ) / (2m/2L)²
K = 27/8 / 1 → 3.37
Answer:
This is not a balanced equation
Explanation:
Let's make it a balanced equation.
2 NH3 + H2So4 = (NH4)2So4
Glad I could help!!
<span>The molecular mass of sodium oxide (Na2O) is A. 61.97894. The molecular mass of a molecule (Mr) is the sum of atomic masses of its atoms (Ar). The molecular mass of sodium oxide is: Mr(Na2O) = 2 * Ar (Na) + Ar(O). From the periodic table, Ar(Na) = 22.989769 and Ar(O) = 15.9994. The molecular mass of sodium oxide is: Mr(Na2O) = 2 * 22.989769 + 15.9994 = 45.979538 + 15.9994 = 61.97894.</span>