Units of impulse: N • s, kg • meters per second
Explanation:
Impulse is defined in two ways:
1)
Impulse is defined as the product between the force exerted in a collision and the duration of the collision:

where
F is the force
is the time interval
Since the force is measured in Newtons (N) and the time is measured in seconds (s), the units for the impulse are
![[I] = [N][s]](https://tex.z-dn.net/?f=%5BI%5D%20%3D%20%5BN%5D%5Bs%5D)
So,
N • s
2)
Impulse is also defined as the change in momentum experienced by an object:

where the change in momentum is given by

where m is the mass and
is the change in velocity.
The mass is measured in kilograms (kg) while the change in velocity is measured in metres per second (m/s), therefore the units for impulse are
![[I]=[kg][m/s]](https://tex.z-dn.net/?f=%5BI%5D%3D%5Bkg%5D%5Bm%2Fs%5D)
so,
kg • meters per second
Learn more about impulse:
brainly.com/question/9484203
#LearnwithBrainly
Form concentric circles around the wire
It might make more sense putting it another way but this is basically it. you just take the minutes and divide them by 60 to convert them to hours. then simplify the ratio
Answer:
A) OA, AB, BC
B) 25m/s^2
C) see explanation
D) 25
E) Rest
Explanation:
From the Velocity time graph shown:
The positive slope = OA ; This is positive because, it is the point of uniform acceleration on the graph.
Constant slope = AB, the slope here is constant because, AB on the graph is the point of constant velocity.
-ve slope = BC
B) Acceleration of body in path OA.
Acceleration = change in Velocity / time
Acceleration = (150 - 0) / 6
Acceleration = 150/6 = 25m/s^2
C) Path AB is Parallel to the because it marks the period of constant velocity (that is Velocity does not increase or decrease during the time interval).
D) Length of BC
BC corresponds to the distance moved, that velocity / time
Velocity = 150 ; time = 6
Therefore Distance (BC) = 150/6 = 25
E.) Velocity =0 ; Hence body is at rest
Answer:
Q1: 3.2km
Q2: 4.8K
Explanation:
Q1:
So db is the distance of bird, and dr is the distance of runner
db = 2vr and the distance of bird is going to be 2 times greater than the runner.
formulas: db = 2vr & db = 2dr
- db = 2dr
- L + (L - x) = 2x
- 2L - x = 2x
- 2L = 3x
- x =
L
Insert it in x =
L
(2.4km) = 1.6km
Now we use formula db = 2dr
- db = 2L - x
- db = 2(2.4km) - 1.6km
- <u>db = 3.2km</u>
Q2:
Formulas: Vr = L /Δt & Vb = db/Δt
- Vr = L/ Δt ⇒ Δt =



(Km cancel each other)
- Vb = db/Δt ⇒ db = VbΔt
- 13.6km/hr

- <u>4.8km</u>
(hr cancel each other)
Hope it helps you :)