The high surface tension helps the paper clip - with much higher density - float on the water. The property of the surface of a liquid that allows it to resist an external force, due to the cohesive nature of its molecules.
Basically it means that there is a sort of skin on the surface of water where the water molecules hold on tight together. If the conditions are right, they can hold tight enough to support your paper clip. The paperclip is not truly floating, it is being held up by the surface tension.
Answer:
Yes.
The nuclear equation {226/88 Ra → 222/26 Rn + 4/2 He} is balanced. As we know that an alpha particle is identical to a helium atom. This implies that if an alpha particle is eliminated from an atom's nucleus, an atomic number of 2 and a mass number of 4 is lost.
Therefore, the equation will be reduced to:
226 - 4 = 222
88 - 2 = 86
Hence, the equation is balanced.
Explanation:
1 mole of platinum has a mass of 195 g therefore 1 atom will have a mass of 195 g /(6.02 ×10^23) = 3.239 × 10^-22 g
Density is given by dividing mass by volume, thus to get volume, mass is divided by density.
The volume = (3.239 × 10^-22)/21.4
= 1.514 × 10^-23 cm³
But volume of a sphere is given by 4/3πr³
Therefore, r³ = 3.6129 × 10^-24
r = ∛(3.6129 × 10^-24)
= 1.534 × 10^ -8 cm
Therefore, the radius of the platinum atom is 1.534 × 10^-8 cm