Answer :
= 108
Explanation
Answer:
A) M = 100X
B) M = 36X
C) M = 178.88X
Explanation:
Given data:
ASTM grain size number 7
a) total grain per inch^2 - 64 grain/inch^2
we know that number of grain per square inch is given as

where M is magnification, n is grain size
therefore we have

solving for M we get
M = 100 X
B) total grain per inch^2 = 500 grain/inch^2
we know that number of grain per square inch is given as

where M is magnification, n is grain size
therefore we have
solving for M we get
M = 36 X
C) Total grain per inch^2 = 20 grain/inch^2
we know that number of grain per square inch is given as

where M is magnification, n is grain size
therefore we have
solving for M we get
M = 178.88 X
Answer:
2.53 L is the volume of H₂ needed
Explanation:
The reaction is: C₁₈H₃₀O₂ + 3H₂ → C₁₈H₃₆O₂
By the way we can say, that 1 mol of linolenic acid reacts with 3 moles of oxygen in order to produce, 1 mol of stearic acid.
By stoichiometry, ratio is 1:3
Let's convert the mass of the linolenic acid to moles:
10.5 g . 1 mol / 278.42 g = 0.0377 moles
We apply a rule of three:
1 mol of linolenic acid needs 3 moles of H₂ to react
Then, 0.0377 moles will react with (0.0377 . 3 )/1 = 0.113 moles of hydrogen
We apply the Ideal Gases Law to find out the volume (condition of measure are STP) → P . V = n . R . T → V = ( n . R .T ) / P
V = (0.113 mol . 0.082 L.atm/mol.K . 273.15K) 1 atm = 2.53 L
Answer:
Physical change because even though gas formation was observed, the water was undergoing a state change, which means that its original properties are preserved.
Explanation:
Water boiling results in the physical state changing from solid to gaseous water. This moment can be called boiling or vaporizing, which is the change from liquid to gaseous state by heating water. Thus, the "Boiling Point" (PE) of a substance is the temperature at which that substance changes from liquid to gaseous state and, in the case of water, is 100 ° C. When the water reaches this temperature its physical change occurs because, despite the formation of gas, the water was undergoing a state change, which means that its original properties are preserved.