when the ball hits the floor and bounces back the momentum of the ball changes.
the rate of change of momentum is the force exerted by the floor on it.
the equation for the force exerted is
f = rate of change of momentum

v is the final velocity which is - 3.85 m/s
u is initial velocity - 4.23 m/s
m = 0.622 kg
time is the impact time of the ball in contact with the floor - 0.0266 s
substituting the values

since the ball is going down, we take that as negative and ball going upwards as positive.
f = 189 N
the force exerted from the floor is 189 N
The maximum acceleration the truck can have so that the refrigerator does not tip over is 4.15 m/s².
<h3>What will be the maximum acceleration of the truck to avoid tipping over?</h3>
The maximum acceleration is obtained by taking clockwise moments about the tipping point of rotation.
Clockwise moment = Anticlockwise moment
Ft * 1.58 m = F * 0.67 m
where
- Ft is tipping force = mass * acceleration, a
- F is weight = mass * acceleration due to gravity, g
m * a * 1.58 = m * 9.81 * 0.67
a = 4.15 m/s²
The maximum acceleration the truck can have so that the refrigerator does not tip over is 4.15 m/s².
In conclusion, the acceleration of the truck is found by taking moments about the tipping point.
Learn more about moments of forces at: brainly.com/question/27282169
#SPJ1
3.375m/s is the final velocity of the car.
<h3>How do you find final velocity?</h3>
The final velocity depends on how large the acceleration is and the distance over which it acts.
Initial velocity of an object, you can multiply the acceleration due to a force by the time the force is applied and add it to the initial velocity to get the final velocity.
According to the question,
A toy car starts from the rest and accelerates
So the acceleration = 1.50m/s²
Time = 2.25s



The final velocity, of the car is 3.375 m/s.
Learn more about velocity here:brainly.com/question/18084516
#SPJ1
Image from a far away object formed by a concave mirror
I have no idea but this is my best guess as a sophomore in college