1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aliun [14]
3 years ago
8

Oil spilled from a ruptured tanker spreads in a circle whose area increases at a constant rate of 5.5 mi2/hr. How rapidly is rad

ius of the spill increasing when the area is 6 mi2?
Physics
1 answer:
Travka [436]3 years ago
8 0
<h2>The radius will increase at the rate of 0.64 mi/hr </h2>

Explanation:

The area of a circle can be represented by  A = π r²            I

Differentiating both sides w.r.t time

\frac{dA}{dt} = 2π r \frac{dr}{dt}                                    II

Dividing II by I , we have

\frac{dA}{A} = 2 x  \frac{dr}{r}

substituting the values

\frac{dr}{r} = \frac{5.5}{12} = 0.46 mi per unit radius

or dr = 1.4 x 0.46 = 0.64 mi/hr

here 1.4 mi is the radius , when area of circle is 6 mi²

You might be interested in
An electron is accelrated by a unifor electric field (1000v/m) pointing vertically upward. Use energy methods to get the magnitu
ExtremeBDS [4]

Explanation:

In the given situation two forces are working. These are:

1) Electric force (acting in the downward direction) = qE

2) weight (acting in the downward direction) = mg

Therefore, work done by all the forces = change in kinetic energy

Hence, qE \times S + mg \times S = 0.5 \times mv^{2}

     1.6 \times 10^{-19} \times 1000 + 9.1 \times 10^{-31} \times 9.8 \times (\frac{0.10}{100}) = 0.5 \times 9.1 \times 10^{-31} \times v^{2}

It is known that the weight of electron is far less compared to electric force. Therefore, we can neglect the weight  and the above equation will be as follows.

   (1.6 \times 10^{-19} \times 1000) \times (\frac{0.10}{100}) = 0.5 \times 9.1 \times 10^{-31} \times v^{2&#10;}

         v = sqrt{\frac{1.6 \times 10^{-19}}{(0.5 \times 9.1 \times 10^{-31})}

           = 592999 m/s

Since, the electron is travelling downwards it means that it looses the potential energy.

8 0
3 years ago
Which three statements about electromagnetic radiation are true?
grandymaker [24]
I think that numbers one, three, and four are true
3 0
3 years ago
Read 2 more answers
HELP PLEASE
melisa1 [442]

answer:

  1. <em>Xi</em><em> </em>+ Xf =10km+30km=60km
  2. v \times \frac{x}{t}
4 0
2 years ago
Sound travels through water at a speed of 1500 m/s. If the frequency of a sound is 1000 Hz, what is the wavelength?
ratelena [41]

Answer:

1.5m

Explanation:

Velocity=1500m/s

Frequency=1000hz

Wavelength =velocity ➗ frequency

wavelength =1500 ➗ 1000

Wavelength=1.5m

3 0
3 years ago
A cannon with a muzzle speed of 1 000 m/s is used to start an avalanche on a mountain slope. The target is 2 000 m from the cann
Nataliya [291]

Answer:

∅ = 89.44°

Explanation:

In situations like this air resistance are usually been neglected thereby making g= 9.81 m/s^{2}

Bring out the given parameters from the question:

Initial Velocity (V_{1}) = 1000 m/s

Target distance (d) = 2000 m

Target height (h) =  800 m

Projection angle ∅ = ?

Horizontal distance = V_{1x}tcos ∅     .......................... Equation 1

where V_{1x} = velocity in the X - direction

           t = Time taken

Vertical Distance = y = V_{1y} t - \frac{1}{2}gt^{2}        ................... Equation 2

Where   V_{1y} = Velocity in the Y- direction

              t  = Time taken

V_{1y} = V_{1}sin∅

Making time (t) subject of the formula in Equation 1

                    t = d/(V_{1x}cos ∅)

                      t = \frac{2000}{1000coso} = \frac{2}{cos0}  =    \frac{d}{cos o}             ...................Equation 3

substituting equation 3 into equation 2

Vertical Distance = d = V_{1y} \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

                                  Vertical Distance = h = sin∅ \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Vertical Distance = h = dtan∅   - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Applying geometry

                              \frac{1}{cos o} = tan^{2} o + 1

  Vertical Distance = h = d tan∅   - 2 g (tan^{2} o + 1)

               substituting the given parameters

               800 = 2000 tan ∅ - 2 (9.81)( tan^{2} o + 1)

              800 = 2000 tan ∅ - 19.6( tan^{2} o + 1)  Equation 4

Replacing tan ∅ = Q     .....................Equation 5

In order to get a quadratic equation that can be easily solve.

            800 = 2000 Q - 19.6Q^{2} + 19.6

Rearranging 19.6Q^{2} - 2000 Q + 780.4 = 0

                    Q_{1} = 101.6291

                      Q_{2} = 0.411

    Inserting the value of Q Into Equation 5

                 tan ∅ = 101.63    or tan ∅ = 0.4114

Taking the Tan inverse of each value of Q

                  ∅ = 89.44°     ∅ = 22.37°

             

4 0
3 years ago
Other questions:
  • Is the moon blue????????
    5·2 answers
  • The change in isotopes over time due to the emission of radioactive particles is known as
    12·2 answers
  • What is a mycorrhiza
    14·2 answers
  • A transformer has a 240 V primary and a 60 V secondary. With a 5 ohm load connected, what is the primary current?
    13·1 answer
  • Acid rain is the direct result of acid released by burning fossil fuels. T/F
    13·2 answers
  • 1.) Starting from rest, a car accelerates at 6.52 m/s^2 for 3.80 s. Determine the distance traveled by the car during this time.
    15·1 answer
  • A long, vertical pipe (radius R) filled with an incompressible Newtonian fluid, is initially capped at its lower end. At some in
    13·1 answer
  • Please help 25 points and brainliest
    8·1 answer
  • A charged rod is brought near one end of a long, uncharged metal block. Students want to experimentally measure the resulting ch
    6·1 answer
  • A Smart Car, which has a mass of 1000 kg, is going 20 m/s. When it hits the barrier, it stops with a time of 0.5 seconds. What i
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!