mole is the standardized form of molarity
Answer:
±0.005 g
Explanation:
The uncertainty depends on whether the measurement was obtained manually or digitally.
1. Manual
The minimum uncertainty is ±0.01 g.
It may be greater, depending on random or personal errors
2. Digital
Most measurements of mass are now made on digital scales.
A digital device must always round off the measurement it displays.
For example, if the display reads 20.00, the measurement must be between 20.005 and 19.995 (±0.005).
If the measured value were 20.006, the display would round up to 20.01.
If the measured value were 19.994, the display would round down to 19.99.
The uncertainty is ±0.005 g.
The scale shown below would display a mass of 20.00 g
Answer:
<h3>The answer is option A</h3>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
<h3>Force = mass × acceleration</h3>
From the question
mass = 2 kg
acceleration = 3 m/s²
We have
Force = 2 × 3
We have the final answer as
<h3>6.0 N</h3>
Hope this helps you
I would say the most correct answer is Kilo, as in kilometers. The store would certainly not be milli, or millimeters away from you, would it now? :)
Hope this helps!