1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aliya0001 [1]
2 years ago
12

Rust forms from the reaction of a metal with oxygen; this is an example of a

Physics
1 answer:
german2 years ago
4 0

Answer: I think your answer would be true.

You might be interested in
If the torque required to loosen a nut that holds a wheel on a car has a magnitude of 55 n·m, what force must be exerted at the
erastova [34]

Either 175 N or 157 N depending upon how the value of 48° was measured from.    
You didn't mention if the angle of 48° is from the lug wrench itself, or if it's from the normal to the lug wrench. So I'll solve for both cases and you'll need to select the desired answer.    
Since we need a torque of 55 N·m to loosen the nut and our lug wrench is 0.47 m long, that means that we need 55 N·m / 0.47 m = 117 N of usefully applied force in order to loosen the nut. This figure will be used for both possible angles.    
Ideally, the force will have a 0° degree difference from the normal and 100% of the force will be usefully applied. Any value greater than 0° will have the exerted force reduced by the cosine of the angle from the normal. Hence the term "cosine loss".     
If the angle of 48° is from the normal to the lug wrench, the usefully applied power will be:  
U = F*cos(48)  
where  
U = Useful force  
F = Force applied    
So solving for F and calculating gives:  
U = F*cos(48)  
U/cos(48) = F  
117 N/0.669130606 = F  
174.8537563 N = F    
So 175 Newtons of force is required in this situation.    
If the 48° is from the lug wrench itself, that means that the force is 90° - 48° = 42° from the normal. So doing the calculation again (this time from where we started plugging in values) we get  
U/cos(42) = F  
117/0.743144825 = F  
157.4390294 = F    
Or 157 Newtons is required for this case.
6 0
2 years ago
Cheetah mothers perform a number of different behaviors. They and their cubs stay in one place for only four days, moving on bef
Mekhanik [1.2K]

Answer:

Cheetah cubs are in danger from predators like lions and hyenas which can track their prey by scent and so the mother and her cubs leave an area when their scent is too strong so that they are not hunted and the cubs survive.

Mother Cheetahs also train their cubs to hunt so that they may get food for themselves which will ensure their survival as well thus showing that both of these practices can impact on reproductive success.

4 0
3 years ago
Which disease do you think is most easily spread? 5 Answers
Anika [276]

Answer:

coronavirus

sida

tuberculosis

sifilis

epatitis

Explanation:

7 0
3 years ago
How much work does the electric field do in moving a proton from a point with a potential of +125 v to a point where it is -55 v
777dan777 [17]
The work W done by the electric field in moving the proton is equal to the difference in electric potential energy of the proton between its initial location and its final location, therefore:
W= qV_i - qV_f
where q is the charge of the proton, q=1 e = 1.6\cdot 10^{-19}C, with e being the elementary charge, and V_i = +125 V and V_f = -55 V are the initial and final voltage.

Substituting, we get (in electronvolts):
W=e(125 V-(-55 V))=180 eV
and in Joule:
W=(1.6 \cdot 10^{-19})(125 V-(-55V))=2.88 \cdot 10^{-17}J

5 0
3 years ago
What is the de Broglie wavelength of an object with a mass of 2.50 kg moving at a speed of 2.70 m/s? (Useful constant: h = 6.63×
xxMikexx [17]

Answer:

9.82 × 10^{-35} Hz

Explanation:

De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:

λ = \frac{h}{mv}

where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.

Given that: h = 6.63 ×10^{-34} Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;

λ = \frac{h}{mv}

  = \frac{6.63*10^{-34} }{2.5*2.7}

 = \frac{6.63 * 10^{-34} }{6.75}

 = 9.8222 × 10^{-35}

The wavelength of the object is 9.82 × 10^{-35} Hz.

4 0
3 years ago
Other questions:
  • There is a(n) __________ relationship between an object's weight and its mass.
    10·1 answer
  • What is the main cause of global convection currents
    11·2 answers
  • If a jumping frog can give itself the same initial speed regardless of the direction in which it jumps (forward or straight up),
    10·1 answer
  • A pulley has an initial angular speed of 12.5 rad/s and a constant angular acceleration of 3.41 rad/s2. Through what angle does
    14·1 answer
  • Please help me**** i need some answers now
    9·1 answer
  • A roller coaster uses the track in this picture. Where will the roller coaster car have the most potential energy?
    11·1 answer
  • Can you describe how and why the molecules move from one side to the other?
    13·1 answer
  • How do i find the number of leptons in an atom??
    9·1 answer
  • How long would it take 150kg person to hit after the same jump?
    8·1 answer
  • Which kind of inclined plane pushes up more? Steeper or flatter?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!