Answer:
In non-polar covalent bonds, the electrons are equally shared between the two atoms. For atoms with differing electronegativity, the bond will be a polar covalent interaction, where the electrons will not be shared equally.
Explanation:
i did some reasherch so there^^
Answer:
3.18 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 0.985 atm
- Initial volume (V₁): 3.65 L
- Final pressure (P₂): 861.0 mmHg
Step 2: Convert P₁ to mmHg
We will use the conversion factor 1 atm = 760 mmHg.
0.985 atm × 760 mmHg/1 atm = 749 mmHg
Step 3: Calculate the final volume of the gas
Assuming ideal behavior and constant temperature, we can calculate the final volume using Boyle's law.
P₁ × V₁ = P₂ × V₂
V₂ = P₁ × V₁/P₂
V₂ = 749 mmHg × 3.65 L/861.0 mmHg = 3.18 L
<span>B. Hydrogen is electrically neutralized in the solution. Hydrogen is a chemical element with symbol H and atomic number 1. With a standard atomic weight of circa 1.008, hydrogen is the lightest element on the periodic table.</span>
There must be effective collisions between the reacting chemical particles in order for the chemical reaction to occur.
There should be mass balance and the charge balance between the reactants and the products
Mass balance : total no of individual atoms of each type should be balanced before and after the reaction
Charge balance : Overall charge of the reactants should be balanced with the overall charge of the products
You can balance,
1)by just looking at it
2)by Algebraic method given above or
3)by the redox method
You need to know how to get the oxidation numbers in order to use the oxidation method