Molecules and polyatomic ions are formed by covalent bonds.
A person's weight will change if they move from the earth to the moon. This does not however, change the person's mass. Mass is the amount of matter that makes up an object, and volume is how much space it takes up. On the moon, there is a lighter gravitational pull on said person, so they will not weigh as much if they stepped on a scale.
Answer:
2.83
Explanation:
Kepler's discovered that the square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit, that is called Kepler's third law of planet motion and can be expressed as:
(1)
with T the orbital period, M the mass of the sun, G the Cavendish constant and a the semi major axis of the elliptical orbit of the planet. By (1) we can see that orbital period is independent of the mass of the planet and depends of the semi major axis, rearranging (1):
(2)
Because in the right side of the equation (2) we have only constant quantities, that implies the ratio
is constant for all the planets orbiting the same sun, so we can said that:




Hello
Here we must use the equation of motion
v^2 = u^2 + 2as; where v is final velocity, u is initial velocity, a is the acceleratoin and is the distance travelled.
We select this one because the time of collision is unknown to us.
We know the truck stopped so its final velocity is 0; thus v = 0.
Converting the initial velocity to SI units, we get 3.89 m/s.
The distance traveled, s, is 0.062 meters.
Inserting all of these values into the equation,
0 = (3.89)^2 + 2(a)(0.062)
and solving for a, we get a to be
-122.0 ms^(-2)
The negative sign indicates the acceleration is in the opposite direction to the initial motion, which means the truck decelerated. This is consistent with the given condition.
Answer:

Explanation:
Assuming the we have to find ratio maximum forces on the mass in each case
we know that in a spring mass system
F= Kx
K= spring constant
x= spring displacement
Case 1:

case 2:

therefore, 
