Answer:
160J
Explanation:
Given force = 8N and total distance = 20 meters
Workdone = force x distance
= 8 x 20
= 160J
Therefore, workdone by Riley in pulling the hoover is 160J
Answer:
a. P = nRTV
Explanation:
The question is incomplete. Here is the complete question.
"All of the following equations are statements of the ideal gas law except a. P = nRTV b. PV/T = nR c. P/n = RT/v d. R = PV/nT"
Ideal gas equation is an equation that describes the nature of an ideal gas. The molecule of an ideal gas moves at a particular velocity depending on the temperature. This gases collides with one another elastically. The collision that an ideal gas experience is a perfectly elastic collision.
The ideal gas equation is expressed as shown:
PV = nRT where:
P is the pressure of the gas
V is the volume
n is the number of moles
R is the ideal gas constant
T is the temperature.
Based on the formula given for an ideal gas, it can be inferred that the equation. P = nRTV is not a statement of an ideal gas equation.
The remaining option will results to an ideal gas equation if they are cross multipled.
Answer: #4
Sally is faster.
Explanation:
If you multiply Sallies it is going to be less than Jessica's.
Answer:
The mass of the solid cylinder is 
Explanation:
From the question we are told that
The radius of the grinding wheel is 
The tangential force is 
The angular acceleration is 
The torque experienced by the wheel is mathematically represented as

Where I is the moment of inertia
The torque experienced by the wheel can also be mathematically represented as

substituting values


So


So

This moment of inertia can be mathematically evaluated as

substituting values

=> 
They prefer leaves i believe