So you subtract the numbers that are on the same axis. So if your gravitational force is 10 and your normal force is 5 you do 5-10 to get -5 since gravity acts downward
Explanation:
Given that,
Electrostatic force, 
Distance, 
(a)
, q is the charge on the ion


(b) Let n is the number of electrons are missing from each ion. It can be calculated as :


n = 2
Hence, this is the required solution.
Answer:
The maximum potential difference is 186.02 x 10¹⁵ V
Explanation:
formula for calculating maximum potential difference

where;
Ke is coulomb's constant = 8.99 x 10⁹ Nm²/c²
k is the dielectric constant = 2.3
b is the outer radius of the conductor = 3 mm
a is the inner radius of the conductor = 0.8 mm
λ is the linear charge density = 18 x 10⁶ V/m
Substitute in these values in the above equation;

Therefore, the maximum potential difference this cable can withstand is 186.02 x 10¹⁵ V
Answer:
1.1397 Nm
Explanation:
When the palmaris longus muscle in the forearm is flexed, the wrist moves back and forth.
If the muscle generates a force
and
, then the torque is equal to 
we see that r = 2.65 cm = 0.0265 m
therefore
torque = 0.0265 x 49.5
= 1.1397 Nm
<span>A transverse wave is one for which the direction of oscillation is perpendicular to the direction of propagation of the wave whereas, for longitudinalwaves oscillations are in the direction of propagation. Ripples in pond water move about the surface of water and they simultaneously move away from the point-0 too.</span><span>
Longitudinal waves include sound waves(vibrations in pressure, particle of displacement, and particle velocity propagated in an elastic medium) and seismic P-waves (created by earthquakes and explosions). In longitudinal waves, the displacement of the medium is parallel to the propagation of thewave.
</span>