Answer: 4100 Mpc
Explanation:
Since H o = 70 km/s/Mpc
Redshift z = 5.82
Recessional velocity vr = 287,000 km/s
Then, the distance to the galaxy in light years will be:
= Recessional velocity / H o
= 287000 / 70
= 4100 Mpc
First let us calculate for the moles of CH3OH formed:
moles CH3OH = 23 g / (32 g / mol) = 0.71875 mol
We see that there are 2 moles of H2 per mole of CH3OH, so:
moles H2 = 0.71875 mol * 2 = 1.4375 mol
Assuming ideal gas behaviour, we use the formula:
PV = nRT
V = nRT / P
V = 1.4375 mol * (62.36367 L mmHg / mol K) * (90 + 237.15
K) / 756 mm Hg
<span>V = 43.06 Liters</span>
The work done by
along the given path <em>C</em> from <em>A</em> to <em>B</em> is given by the line integral,

I assume the path itself is a line segment, which can be parameterized by

with 0 ≤ <em>t</em> ≤ 1. Then the work performed by <em>F</em> along <em>C</em> is
![\displaystyle \int_0^1 \left(6x(t)^3\,\vec\imath-4y(t)\,\vec\jmath\right)\cdot\frac{\mathrm d}{\mathrm dt}\left[x(t)\,\vec\imath + y(t)\,\vec\jmath\right]\,\mathrm dt \\\\ = \int_0^1 (288(3t-1)^3-8(2t+5)) \,\mathrm dt = \boxed{312}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E1%20%5Cleft%286x%28t%29%5E3%5C%2C%5Cvec%5Cimath-4y%28t%29%5C%2C%5Cvec%5Cjmath%5Cright%29%5Ccdot%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5Bx%28t%29%5C%2C%5Cvec%5Cimath%20%2B%20y%28t%29%5C%2C%5Cvec%5Cjmath%5Cright%5D%5C%2C%5Cmathrm%20dt%20%5C%5C%5C%5C%20%3D%20%5Cint_0%5E1%20%28288%283t-1%29%5E3-8%282t%2B5%29%29%20%5C%2C%5Cmathrm%20dt%20%3D%20%5Cboxed%7B312%7D)
Answer:
The crate was being lifted by a height of 1.48 meters.
Explanation:
In an attempt o move a crate;
Force applied = 2470 N
Work done by the force = 3650 J
We know that the work done is defined as the force used to move an object to a distance.
Given the Force used and the work done by that Force, we need to find out the distance the crate was lifted to.
Work done is defined as:
Work = Force*distance covered in the direction of the force
3650 = 2470*distance
distance = 3650/2470
distance = 1.48 meters